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Disclaimer: This guideline is designed primarily as an educational resource for health care providers to help
them provide quality medical genetic services. Adherence to this guideline does not necessarily assure a
successful medical outcome. This guideline should not be considered inclusive of all proper procedures and
tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In
determining the propriety of any specific procedure or test, the geneticist should apply his or her own
professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It
may be prudent, however, to document in the patient’s record the rationale for any significant deviation from
this guideline.

Abstract: Laboratory evaluation of patients with developmental delay/
intellectual disability, congenital anomalies, and dysmorphic features
has changed significantly in the last several years with the introduction
of microarray technologies. Using these techniques, a patient’s genome
can be examined for gains or losses of genetic material too small to be
detected by standard G-banded chromosome studies. This increased
resolution of microarray technology over conventional cytogenetic anal-
ysis allows for identification of chromosomal imbalances with greater
precision, accuracy, and technical sensitivity. A variety of array-based
platforms are now available for use in clinical practice, and utilization
strategies are evolving. Thus, a review of the utility and limitations of
these techniques and recommendations regarding present and future
application in the clinical setting are presented in this study. Genet Med
2010:12(11):742–745.
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Laboratory evaluation of patients with developmental delay/
intellectual disability (DD/ID), congenital anomalies, and

dysmorphic features has changed significantly in the last several
years with the introduction of microarray technologies (array-
based comparative genomic hybridization [CGH] and single
nucleotide polymorphism [SNP] array analysis) into the menu
of tests available to the practicing clinician. With these tech-
niques, a patient’s genome is examined for detection of gains or
losses of genetic material that typically are too small to be
detectable by standard G-banded chromosome studies. Guide-

lines for the application of array-based technology in the prac-
tice of medical genetics were originally published in this journal
in 2007.1 However, because of the rapidly expanding use of
genomic copy number microarrays in the clinical setting, we
update the recommendations in this study.

MICROARRAY FOR EVALUATION OF COPY
NUMBER VARIATION

Diagnostic cytogenetic testing has undergone a marked evo-
lution since the introduction of chromosome banding techniques
in the late 1960s.2 DNA-based techniques such as genomic copy
number microarrays (cytogenetic microarrays [CMAs]) are the
latest tools available for clinical use.1 The initial CGH technol-
ogy was developed for genome-wide screening for unbalanced
rearrangements in a single experiment.1,3–5 However, the reso-
lution of this “conventional” CGH was only 3–10 Mb4 compa-
rable with high-resolution karyotyping,1 thus CGH was further
adapted for use on microarrays.6 With array CGH, cloned (e.g.,
bacterial artificial chromosomes [BACs]) or synthesized (e.g.,
oligonucleotides [oligos]) DNA fragments representing precise
chromosomal loci across the genome are immobilized on a glass
surface.1,7,8 Copy number variants (CNVs) are determined by
the differences in hybridization pattern intensities between pa-
tient DNA and control DNA.7 Hybrid SNP/oligo arrays have
been developed for the analysis of CNVs and detection of copy
number neutral regions of homozygosity. For these analyses,
the patient DNA is labeled and hybridized to the microarray,
and the patient results are compared with a well-studied refer-
ence DNA.9 It should be noted that not all CNVs are pathologic,
in that it has been demonstrated that the mean number of benign
CNVs per person could be as high as 800 or more.10

The resolution and yield of an array is limited by the genomic
coverage (the length of and spacing between probes) on the
microarray3,11,12 and by the specific statistical algorithms used
to set the criteria for gains and losses. The increased resolution
of microarray technology over conventional cytogenetic analy-
sis allows for identification of chromosomal imbalances with
greater precision, accuracy, and technical sensitivity.
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CLINICAL UTILITY

Rauch et al.13 investigated the diagnostic yield of various
genetic tests used in the evaluation of patients with unexplained
cognitive impairment. In their study, molecular karyotyping
would only miss �0.6% of cases with disease-causing balanced
de novo aberrations. They noted that molecular karyotyping in
every patient with cognitive impairment would have the highest
diagnostic yield of any single test (28.9%) and was, thus,
suggested by the authors to be considered a first-tier test. Re-
cently, Miller et al.14 reviewed the evidence for utilization of
CMA as a first-tier test for the investigation of DD/ID, multiple
congenital anomalies, and/or autism spectrum disorders
(ASDs). These authors’ recommendation for use of CMA as a
first-tier test was based on studies of 21,698 patients referred for
the above-listed indications, in whom the diagnostic yield was
12.2% higher than that of a G-banded karyotype. After a review
of 36,325 patients with DD/ID, Hochstenbach et al.15 also
recommended that CMA be a first-tier test in this group of
patients. In their study, a pathogenic anomaly was found in
19%. Shen et al.16 specifically investigated the utility of CMA
in the investigation of children with ASD. They also provided
evidence that analysis should be the first-tier test for children
with autism. They found that although abnormalities were found
on karyotyping and fragile X testing 2.23% and 0.46% of the
time, respectively, a microarray identified deletions or duplica-
tions in 18.2% of patients (N � 848), with 7% of those clearly
abnormal.

In addition to the linking of submicroscopic de novo dele-
tions and duplications identified on CMA to the patients’ dis-
orders,17,18 de novo CNVs have also been implicated in increas-
ing the risk for ASD and point to regions of the genome that
may house candidate genes for autism.19,20

Additional uses for CMA include the investigation of indi-
viduals with physical or cognitive impairment but in whom
conventional cytogenetic studies demonstrated an apparently
balanced translocation. Subsequent CMA investigation demon-
strated that the karyotype was actually unbalanced; several
studies have shown that approximately 20% of individuals with
an apparently balanced translocation (de novo or familial) have
loss or gain of genetic material as identified by CMA.21,22 More
recently, CMA has been shown to be valuable in uncovering
chromosomal regions of medical importance apart from the
original indication of the study. Adam et al.23 reported three
patients evaluated for DD or dysmorphic features/multiple
anomalies who were found by CMA to have microdeletions
encompassing known tumor susceptibility genes. In a larger
study, Adams et al.24 found that 0.18% of patients with an
identified gain or loss of genetic material had the inclusion of a
gene associated with a cancer-predisposing condition. Both sets
of authors emphasized that information gained from CMA, such
as the unexpected finding of tumor susceptibility, can have a
direct bearing on the future medical management of patients
with DD/multiple congenital anomalies in addition to providing
an explanation of the general phenotype.

In addition to identifying copy number variants that affect the
number of copies of a particular gene or genes, microarray
analysis could theoretically identify genes that are disrupted by
breakpoints in the genome. Disruption could be on the basis of
interruption of a coding sequence or of a sequence that affects
transcription and translation, e.g., sequence changes in a pro-
moter region. Examples include duplications and deletions in-
volving the NRXN1 and CNTN4 genes.25,26 Finally, as pointed
out by Moeschler.27,28 and Saam et al.,29 an accurate diagnosis
for patients will provide the clinician the opportunity to discuss

treatment options, prognosis, and recurrence risks as well as to
avoid unnecessary future testing.

PLATFORMS

Although microarray analysis is proficient in characterizing
chromosomal imbalances (which ultimately improves patient
care),29 clinicians ordering the test need to be aware of the
different clinical platforms (e.g., BAC versus oligo, targeted
versus whole genome, and SNP), the variation in resolution
among arrays and the information each provides. For example,
many clinicians are unaware that a whole genome oligoarray
can detect clinically significant copy number changes missed on
a targeted BAC array30 or that a SNP array can detect long
contiguous stretches of homozygosity that can be associated
with uniparental disomy or consanguinity, both of which in-
crease the risk for autosomal recessive conditions.

Array resolution is dependent on the number and types of
probes used and how they are distributed across the genome.31

BAC probes are larger than oligonucleotide probes used for
oligo and SNP arrays (BACs are �75,000 to 150,000 base pairs
in length, whereas oligos are usually �50 to 60 base pairs long).
This translates into reduced breakpoint specificity of copy num-
ber abnormalities for the BAC arrays. Higher probe density on
oligo arrays allows for copy number evaluation to be based on
multiple adjacent probes, enhancing the accuracy of the inter-
pretation. Oligonucleotide array construction tends to have bet-
ter reproducibility and less batch-to-batch variation than does
BAC construction.31

SNP microarrays are applications of microarray technology
that also provide genome-wide copy number analysis. In addi-
tion to copy number changes, SNP arrays are able to detect
so-called “copy number neutral” abnormalities such as segmen-
tal uniparental disomy and areas of long contiguous stretches of
homozygosity that can give rise to disease, congenital anoma-
lies, or cognitive impairment.32,33 SNP arrays are increasingly
being used in the assessment of cognitive impairment or DD,
with or without associated anomalies and are likely to be used
in the diagnosis of these conditions.9,11

When ordering a CMA, the clinician should be aware of the
various platforms currently in use and their limitations. Ques-
tioning the laboratory performing the test about coverage of the
array in specific regions of interest (e.g., telomeres, X chromo-
some, and common microdeletions) is justified. The clinician
also should understand what type of follow-up tests will be
performed, and on whom, in the event of abnormal results.
Further, for deletions and duplications, parental studies (by
fluorescence in situ hybridization [FISH] or metaphase prepa-
rations, if possible) should be conducted to rule out the presence
of a chromosomal rearrangement such as an insertion or inher-
ited duplication. Although rare, for a family in which such a
rearrangement is found, recurrence risk can be as high as 50%.
With increased utilization of a diagnostic test comes a better
appreciation of the range of possible and sometimes unexpected
results. This is certainly the case with array CGH and identifi-
cation of what we now understand to be benign CNVs. An
international consortium of more than 75 laboratories has been
formed to address questions surrounding array-based testing.
The International Standard Cytogenomic Array consortium
(https://isca.genetics.emory.edu/iscaBrowser/) is investigating
the feasibility of establishing a standardized, universal system
of reporting and cataloging CGH results, both pathologic and
benign, to provide the clinician with the most accurate and
up-to-date information.14 Databases currently available for refer-
encing gene location and function, CNV listings, and up-to-date
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clinical information for specific abnormalities include the UC
Santa Cruz Database (http://www.genome.uscs.edu), the Toronto
Database of Genomic Variants (http://projects/tcag.ca/variation/),
DECIPHER (http://www.sanger.ac.uk/PostGenomics/decip), and
ECARUCA.34

Even though CMA technology has greatly improved since it
was initially developed,4 clinicians ordering these tests must be
aware of the limitations that remain. Array CGH cannot identify
balanced chromosomal rearrangements, such as translocations
or inversions, or differentiate free trisomies from unbalanced
Robertsonian translocations.13,35,36 Some aneuploidies can be
missed, such as XYY if the wrong gender control is used.31

Marker chromosomes may also be missed, depending on the
size, marker composition, and array coverage of the specific
chromosomal region present on the marker.35 Detection of
mosaicism has been reported, but the accuracy of detecting low
levels described by some groups37 has been questioned by
others.35,36 Recently, Scott et al.38 suggested that mosaicism for
an extra chromosome could be detected at the 10% level,
whereas mosaicism for deletion or duplication of part of a
chromosome could be detectable at the 20–30% level. These
findings remain to be replicated by others. Interpretation of the
significance of a rare copy number change can be incomplete if
parental samples are unavailable for comparison and published
data on the CNV are lacking. Finally, triploidy will not be
detected by some forms of microarray.

A microarray should not be ordered when a rapid turnaround
time is needed (e.g., a STAT newborn analysis), especially if a
chromosomal trisomy is suspected. Currently, a STAT G-banded
chromosome analysis can be performed within 48 hours. With
some array CGH platforms, hybridization alone can take 48 hours.
Although technically some arrays may be run in 3–5 days in some
laboratories, analysis and confirmation of results with FISH (de-
velopment of a unique probe can take weeks) and analysis of
parental samples and interpretation may take much longer.

Although microarray is a powerful diagnostic tool for the
evaluation of chromosomal copy number changes, its use as a
first-tier test may not always be appropriate. For example,
conventional karyotyping may be more appropriate when a
common aneuploidy (e.g., trisomy 21, trisomy 18, or a sex
chromosome aneuploidy) is suspected. FISH with a single probe
to confirm a suspected diagnosis of a well-described syndrome,
such as Williams syndrome, would be a more cost-effective
testing methodology. CMA also should not be used in cases of
family history of chromosome rearrangement in a phenotypi-
cally normal individual or in cases of multiple miscarriages.14

Finally, CMA cannot detect low-level mosaicism or, in some
arrays, polyploidy.

Recommendations

1. CMA testing for CNV is recommended as a first-line test
in the initial postnatal evaluation of individuals with the
following:
A. Multiple anomalies not specific to a well-delineated

genetic syndrome.
B. Apparently nonsyndromic DD/ID.
C. Autism spectrum disorders.

2. Further determination of the use of CMA testing for the
evaluation of the child with growth retardation, speech
delay, and other less well-studied indications is recom-
mended, particularly by prospective studies and after-
market analysis.

3. Appropriate follow-up is recommended in cases of chro-
mosome imbalance identified by CMA, to include cyto-

genetic/FISH studies of the patient, parental evaluation,
and clinical genetic evaluation and counseling.
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