

www.journals.elsevier.com/genetics-in-medicine

ACMG SYSTEMATIC EVIDENCE REVIEW Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies

Disclaimer: The ACMG has recruited expert panels, chosen for their scientific and clinical expertise, to conduct systematic evidence reviews (SERs) to support the development of clinical practice guidelines. An SER focuses on a specific scientific question and then identifies, analyzes and summarizes the findings of relevant studies. ACMG SERs are provided primarily as educational resources for medical geneticists and other clinicians to help them provide quality medical services. They should not be considered inclusive of all relevant information on the topic reviewed.

Reliance on this SER is completely voluntary and does not necessarily assure a successful medical outcome. In determining the propriety of any specific procedure or test, clinicians should apply their own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this SER. Clinicians also are advised to take notice of the date this SER was published, and to consider other medical and scientific information that becomes available after that date. Requests for permissions must be directed to the American College of Medical Genetics and Genomics, as rights holder.

ARTICLE INFO

Article history: Received 23 March 2022 Accepted 28 March 2022 Available online 24 May 2022

Keywords: Cell-free DNA Down syndrome Noninvasive prenatal screening Trisomy

ABSTRACT

Purpose: Noninvasive prenatal screening (NIPS) using cell-free DNA has been assimilated into prenatal care. Prior studies examined clinical validity and technical performance in high-risk populations. This systematic evidence review evaluates NIPS performance in a general-risk population. **Methods:** Medline (PubMed) and Embase were used to identify studies examining detection of Down syndrome (T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies, rare autosomal trisomies, copy number variants, and maternal conditions, as well as studies assessing the psychological impact of NIPS and the rate of subsequent diagnostic testing. Random-effects meta-analyses were used to calculate pooled estimates of NIPS performance (P < .05). Heterogeneity was investigated through subgroup analyses. Risk of bias was assessed.

Results: A total of 87 studies met inclusion criteria. Diagnostic odds ratios were significant (P < .0001) for T21, T18, and T13 for singleton and twin pregnancies. NIPS was accurate ($\geq 99.78\%$) in detecting sex chromosome aneuploidies. Performance for rare autosomal trisomies and copy number variants was variable. Use of NIPS reduced diagnostic tests by 31% to 79%. Conclusions regarding psychosocial outcomes could not be drawn owing to lack of data. Identification of maternal conditions was rare.

Conclusion: NIPS is a highly accurate screening method for T21, T18, and T13 in both singleton and twin pregnancies.

© 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.

[†]Nancy C. Rose and Elizabeth S. Barrie contributed equally.

[‡]Danielle LaGrave and Marco L. Leung contributed equally.

The Board of Directors of the American College of Medical Genetics and Genomics approved this systematic evidence review on 28 February 2022. *Correspondence: ACMG. *E-mail address:* documents@acmg.net

A full list of authors and affiliations appears at the end of the paper.

doi: https://doi.org/10.1016/j.gim.2022.03.019

1098-3600/© 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.

Introduction

Since its introduction in 2011, noninvasive prenatal screening (NIPS) using cell-free DNA (cfDNA) for the detection of common fetal aneuploidies has been rapidly assimilated into prenatal care.¹ With a resolution similar to karyotyping² and regardless of the methodology used, cfDNA is the most sensitive and specific screening test for common chromosomal aneuploidies (chromosomes 13, 18, and 21).^{3,4} Before its introduction into clinical use, no large-scale randomized control trials were performed to assess the clinical validity or clinical utility of this screening test. Subsequently, multiple studies have determined the sensitivity and specificity of this testing, focusing largely on high-risk patient populations with singleton pregnancies.^{1,5-7}

Before the implementation of NIPS, screening for aneuploidy consisted mainly of multiple serum analytes with or without ultrasound to achieve a detection rate ranging from 80% to 95% for Down syndrome.⁸ Although NIPS has a greater accuracy for aneuploidy detection, approximately 99% for Down syndrome at 10 weeks of gestation or greater,⁴ detection rates vary slightly between laboratories owing to differences in methodologies and reporting methods.

When diagnostic testing is performed to evaluate a screen-positive high-risk result generated through NIPS, a subset of individuals will have discordant results, with varying false positive rates (FPRs) depending on the specific chromosome interrogated, the type of variant, and the prevalence of the condition. Although the intent of screening is to determine whether fetal aneuploidy is present, the specimen obtained contains predominantly maternal DNA, and the test often cannot distinguish between fetal and maternal chromosomal material. This may lead to unexpected maternal findings for which patients are unprepared, including the suggestion of maternal malignancy, a maternal submicroscopic duplication or deletion, or a maternal sex chromosome aneuploidy (SCA). Finally, all screening tests have false-positive (FP) and false-negative (FN) results but given the enhanced accuracy to detect the common trisomies, some health care providers and patients may inappropriately consider the test to be diagnostic.⁹

Current national guidelines from multiple organizations state that pregnant individuals should be made aware of both the accuracy and limitations of cfDNA screening for the detection of the common trisomies. The most recent American College of Medical Genetics and Genomics (ACMG) position statement states that "all women should be informed that NIPS is the most sensitive screening option for traditionally screened aneuploidies."³ The American College of Obstetrics and Gynecology reinforces this statement.⁸ Both organizations stress that NIPS is not equivalent to diagnostic testing.

Although initially NIPS was used to screen for the common trisomies and SCAs in singleton pregnancies, many laboratories have adapted this technology to screen twin gestations.¹⁰ Furthermore, in some laboratories, the application has been expanded to screen for rare autosomal trisomies (RATs), as well as for both common and unique copy number variants (CNVs). However, the positive predictive values (PPVs) for these conditions are significantly lower than the PPVs for common aneuploidies and large-scale outcome studies have not been performed, nor has clinical utility of screening for these rarer conditions been established.

This systematic evidence review (SER) is designed to assess the clinical performance of NIPS in a general-risk population of both singleton and twin pregnancies. It also evaluates the use of NIPS with respect to the identification of CNVs, SCAs, RATs, and maternal conditions, its impact on the uptake of diagnostic testing, the economic implications of its use, as well as the psychological impact of this technology on the individuals undergoing prenatal screening for aneuploidy.

Materials and Methods

We performed an SER using best practices and report our methods and results in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist.¹¹ In 2020, ACMG convened an SER workgroup to develop the evidentiary basis for a clinical guideline. The SER workgroup comprised ACMG members, including a board-certified medical geneticist and maternal fetal medicine physician (N.C.R.), clinical directors of laboratory medicine (E.S.B., M.L.L.), a laboratory genetic counselor (D.L.), and methodologists (J.M., G.P.J., M.R.M.). Working group members had no conflicts of interest according to ACMG policy. The goal of the SER was to assess the use of NIPS in a population of generalrisk individuals, ie, a population reflective of a range of risks that might be encountered in general obstetrical practice, including low-risk, intermediate-risk, and highrisk patients. To address this question, a separate guideline panel external to the authors and methodologist (M.R.M.) defined the population, intervention, comparator(s), outcomes, timing, and setting and developed a set of 10 key questions (KQ) and corresponding search queries (Supplemental Material).

We initially searched Medline (PubMed) and Embase for relevant studies on July 30, 2020 and updated our search on March 26, 2021. The search strategy for Medline is presented in the Supplement. We further identified relevant studies cited by other studies or from meta-analyses. We updated our search query to account for additional synonyms used for NIPS and limited returns on the basis of publication date consistent with the original search. Results from the databases were managed in an Endnote (version 9.3.3; version 20) library that was used for deduplication. Deduplicated results were uploaded to Covidence for review and data extraction/quality assessment.

All stages of the review were performed independently by 2 reviewers. Conflicts were resolved through discussion between reviewers or adjudicated by a third reviewer. Titles and abstracts of search results were screened according to prespecified inclusion and exclusion criteria (Supplemental Material). Articles not excluded in the title/abstract screening were reviewed in their entirety for inclusion; rationale for exclusion was documented (Supplemental Material). Data extraction and risk of bias forms were created within Covidence for diagnostic accuracy and clinical utility studies; data extraction was completed in Microsoft Excel spreadsheets guided by the Consolidated Health Economic Evaluation Reporting Standards checklist.¹² Data extracted included study, population characteristics, details about NIPS and any comparators, and outcome(s). Data for true positives (TPs), true negatives (TNs), FPs, and FNs were extracted when provided or calculated by reviewers when there was sufficient confidence in the data reported. Risk of bias was assessed using the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I)¹³ framework or the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)¹⁴ for diagnostic accuracy studies.

Data analysis

Data exported from Covidence was cleaned in Microsoft Excel. Analysis was performed using R Studio (v.1.4.1717) (R Development Core Team), R (version 4.1.0) with the R packages "meta," "metafor," "mada," "diagmeta," and "ggplot2." An analysis plan was prespecified; random-effects meta-analyses were planned to obtain pooled point estimates and 95% CI for each of the diagnostic performance outcomes for KQ1 to KQ6. Only studies where the TPs, TNs, FPs, and/ or FNs were provided or calculable with relative certainty from the data presented in the manuscript were included in meta-analyses. Studies reporting their performance without also providing the number of people in each category were not meta-analyzed and their results are reported separately. Quantitative analysis was deemed unlikely to be possible for KQ7 to KQ10 and results for those KQs were narratively synthesized. Anticipated heterogeneity was investigated through sensitivity analyses, with subgroups defined for country, year of publication, risk of bias assessment (low, moderate, high, critical), and size of population screened $(<10,000, \ge 10,000)$. Heterogeneity is reported as I². Publication bias was evaluated using the method described by Peters et al¹⁵ weighted by inverse variance of average event probability and visualized with funnel plots. Results of the meta-analyses, including heterogeneity, are presented as forest plots and summarized in tables.

Results

We identified 770 articles from our literature searches and review of included studies from published meta-analyses and SERs. After deduplication, we screened 753 titles and abstracts and excluded 538 of those. We reviewed 215 studies in their entirety and determined 128 did not meet inclusion criteria (Supplemental Material). Of the 87 studies that ultimately met our inclusion criteria, 78 reported clinical outcomes and/or NIPS performance and 10 reported on economic outcomes (with 1 study reporting both). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart is presented in the Supplement. A summary of all included studies is presented in the Supplement.

Trisomy 21

A total of 35 studies reported at least 1 performance characteristic (ie, sensitivity, specificity, PPV, negative predictive value (NPV), or FPR) for trisomy 21 (T21) (Supplemental Material). Of these, 28 were included in meta-analyses and the remainder were narratively synthesized. Studies reporting a statistic for >1 outcome combined are reported separately. The number of studies in the metaanalyses depended upon the specific data presented in the included studies. The pooled performance characteristics are presented in Table 1, with accompanying forest plots in the Supplement.

Two additional studies^{16,17} reported sensitivity without presenting the number of TPs and/or FNs (98.9%, 95% CI = 95.90%-99.90%; 100%, 95% CI = 92%-100%, respectively). Together with the results of the meta-analysis, sensitivity ranged from 95% to 100% in 19 studies with no evidence of important heterogeneity between studies. Two additional studies reported specificity^{18,19} without presenting the number of TPs and/or FNs (100%, 95% CI = 99.5%-100%; 99.95% [no CI given], respectively). Together with the results of the meta-analysis, specificity ranged from 99.89% to 100% in 17 studies. Costa et al¹⁸ and Kypri et al¹⁷ similarly reported PPV without presenting the number of TPs and/or FPs (100%, 95% CI = 59.0%-100%; 100%, 95% CI = 92%-100%, respectively). The pooled estimate of NPV was 100% (95% CI = 99.99%-100%) from 14 studies included in our meta-analysis. One additional study reported NPV without presenting the number of TNs and/or FNs (99.996% [no CI given]).¹⁹ Sensitivity, specificity, PPV, and NPV of NIPS for T21 in Belgium were reported as 98.91% (95% CI = 97.24%-99.58%), 99.98% (95% CI = 99.97%-99.99%), 92.39% (95% CI = 89.34%-94.61%), and 100% (95% CI = 99.99%-100.00%), respectively.²⁰ Together with the results of the meta-analysis, NPV ranged from 99.99% to 100% in 16 studies and there was no important heterogeneity ($I^2 = 0\%$) observed between the studies included in the meta-analysis. In total, 14 studies contributed to the meta-analysis for FPR; the pooled estimate was 0.04% (95% CI = 0.02%-0.08%) with considerable heterogeneity ($I^2 = 76\%$) (Table 1). A total of 7 additional studies^{18,19,21-25} reported FPR without presenting the number of TNs and/or FPs (Supplemental Material).

No. of I^{2} (%) **Test Statistic** Studies Result (%) (95% CI) Trisomy 21 Sensitivity 98.80 (97.81-99.34) 0.0 17 Specificity 14 99.96 (99.92-99.98) 75.9 91.78 (88.43-94.23) PPV 28 68.3 NPV 14 100 (99.99-100) 0.0 FPR 14 0.04 (0.02-0.08) 75.9 99.94 (99.91-99.96) 80.2 Accuracy 14 DOR^a 14 110,000 (44,000-260,000); 55.7 *P* < .0001 Trisomy 18 98.83 (95.45-99.71) Sensitivity 6 0.0 7 99.93 (99.83-99.97) Specificity 94.9 PPV 17 65.77 (45.29-81.68) 88.5 NPV 100 (100-100) 7 0.0 7 FPR 0.07 (0.03-0.17) 75.9 99.91 (99.73-99.97) Accuracy 6 95.7 DOR^a 29,000 (4800-180,000); 6 94.9 P < .0001Trisomy 13 Sensitivity 7 100 (0-100) 0.0 Specificity 8 99.96 (99.92-99.98) 81.5 PPV 18 37.23 (26.08-49.93) 71.9 NPV 8 100 (100-100) 0.0 FPR 8 0.04 (0.02-0.08) 81.5 Accuracy 8 99.95 (99.90-99.97) 82.2 DOR^a 7 29,000 (8900-94,000); 0 *P* < .0001

Table 1Performance of NIPS in a general-risk population fortrisomy 21, trisomy 18, and trisomy 13 calculated in random-effects meta-analyses

Results do not include studies without adequate data to include in meta-analyses.

DOR, diagnostic odds ratio; FPR, false positive rate; NIPS, noninvasive prenatal screening; NPV, negative predictive value; PPV, positive predictive value.

^aData presented as odds ratio.

The diagnostic odds ratio (DOR) could be assessed in 14 studies. The estimated odds ratio of the DOR in the randomeffects meta-analysis was 108,000 (95% CI 44,000-265,000). The odds for someone receiving a positive NIPS result in patients who are TP for T21 is >100,000 times higher than the odds for a positive NIPS result in patients who are TNs for T21. This highly significant (P < .0001) result shows that the NIPS tests are highly accurate and is consistent with an overall NIPS accuracy of 99.94% for T21 (Table 1).

In sensitivity analyses, risk of bias, country, and populations of $\geq 10,000$ individuals were inconsistently associated with reported higher performance (Supplement). Although some subgroups were significantly different from each other, many subgroups contained only a single study and differences were not clinically meaningful. Overall, performance statistics for NIPS to detect T21 in general- or mixed-risk populations were high.

Trisomy 18

A total of 21 studies contributed to our analysis of NIPS to detect trisomy 18 (T18), whereas 2 studies reported combined results for T18 and trisomy 13 (T13) and are presented separately. Summary results and forest plots from random-effects meta-analyses for T18 are presented in Table 1 and the Supplement, respectively. In addition to the meta-analyses, Chen et al²⁶ reported a PPV of 54.84% (no CI given) for T18 in their mixed-risk population of 42,910 individuals with singleton pregnancies; however, PPV specifically among individuals with no clinical indications was 0%. From a cohort of 10,975 low-risk individuals in China, 166 had an adverse pregnancy outcome. Follow up with ultrasound and additional diagnostic testing identified a T18 FN from NIPS drawn at 17⁺³ weeks gestational age in a 26 year old individual.²⁷ In the Belgian study, sensitivity, specificity, and NPV were each reported as >95%, whereas PPV was lower, at 84.62% $(95\% \text{ CI} = 75.82\% - 90.61\%).^{20}$

We observed considerable heterogeneity in our metaanalyses. Sensitivity analyses uncovered significant between-subgroup differences on the basis of country and year of publication; however, these differences were not clinically meaningful and for country, most subgroups contained a single study (Supplemental Material). Overall, sensitivity, specificity, NPV, and accuracy of NIPS to detect T18 was high and the FPR was low (0.07%), but PPV was substantially lower than the PPV of NIPS for T21 (Table 1).

T13

A summary of the performance characteristics of NIPS for detection of T13 reported by 19 studies and meta-analysis is presented in Table 1 with corresponding forest plots and sensitivity analyses in the Supplement.

Overall, we observed high sensitivity, specificity, accuracy, and DOR for T13 with low FPRs. PPV was low at 37%, which was lower than the PPV for T18 and substantially lower than the PPV for T21. Similar to the subgroup analyses performed for T21 and T18, performance may vary, although the data are insufficient to draw conclusions about any individual subgroup. One additional study reported specificity without presenting the number of TNs and/or FPs (99.94% [no CI given]).²⁸ In that study of 40,265 individuals who received NIPS, diagnostic testing confirmed 4 of 33 T13 positive results.²⁸ Chen et al²⁶ reported an overall PPV of 13.79% for T13; however, in the subset of their population with no clinical indications, PPV was 25.00%. In the large study of >150,000 singleton pregnancies from Belgium, sensitivity, specificity, and NPV of NIPS for T13 was very high (each >99%), whereas PPV was considerably lower in this general-risk population: $43.90\% (95\% \text{ CI} = 33.67\% - 54.68\%).^{20}$

Combined T21, T18, T13

Most studies reported NIPS performance separately for each trisomy; however, there were some that reported overall performance for multiple outcomes. Oneda et al²⁹ evaluated NIPS performance for T21/T18/T13 in both prospective and retrospective populations. In their prospective cohort, sensitivity was reported as 100% (95% CI = 91.96%-100%), specificity was 99.97% (95% CI = 99.81%-100%), PPV was 97.78% (95% CI = 86.11%-99.68%), and NPV was 100% (no CI). This resulted in test accuracy of 99.97% (95% CI = 99.81%-100%). In a Chinese population of 15,626 people, Yao et al³⁰ reported an overall PPV of 79.07% (95% CI = 68.69%-86.80%) for T21/T18/T13 with an FPR of 0.13% (95% CI = 0.08%-0.21%).³⁰

Guy et al¹⁶ reported combined sensitivity and PPV for T18 and T13 (90.4%, 95% CI = 80.0%-96.8%; 92.2%, 95% CI = 81.5%-96.9%, respectively). Together with the results of the meta-analyses, these data present a largely positive view of NIPS as a highly accurate screening method for T21, T18, and T13, although, variability in a number of factors influenced specific test metrics.

NIPS performance in multifetal gestations

In total, 11 studies reported at least 1 performance characteristic of NIPS to detect T21, T18, or T13 in multifetal gestations, 7 of which were included in meta-analyses. A summary of results from the random-effects meta-analyses are presented in Table 2 with corresponding forest plots in the Supplement.

In the limited number of studies reporting on use of NIPS for twin gestations, diagnostic performance to detect T21, T18, and T13 was generally high, with no/little observed heterogeneity. Apart from the studies included in the metaanalysis, 4 additional studies reported outcomes pertaining to NIPS use in twin gestations.^{29,31-33} NIPS screen-positive results were identified in 11 twin and 1 triplet pregnancies, accounting for 2.7% of twin pregnancies, from a prospective mixed-risk cohort of 3053 individuals.²⁹ Diagnostic testing confirmed the results except for 1 individual, in which it was found in the placenta of 1 twin only and reported as an FP.²⁹ No FP results were observed in patients with confirmatory testing for T21, T18, or T13 in either monozygotic or dizygotic pregnancies.³³ In the same study, fetal sex confirmation and zygosity calls were found to be correct in all patients.³³

In a study of singleton and multifetal pregnancies in China, fetal sex determination was concordant in 98.6% (95% CI = 92.19%-99.96%) of twins and 97.6% (95% CI = 91.76%-99.71%) of triplets.³⁰ Three cases of chromosomal aneuploidy were observed in twin pregnancies. A sample from a dichorionic diamniotic pregnancy with NIPS results suggesting T21 in both fetuses resulted in termination of pregnancy that was not confirmed on the products of conception in this report. A second dichorionic diamniotic

 Table 2
 Diagnostic performance statistics of NIPS in twin gestations

	No. of		
Test Statistic	Studies	Result (%) (95% CI)	I² (%)
Trisomy 21			
Sensitivity	7	98.18 (88.19-99.74)	0
Specificity	7	99.93 (99.78-99.98)	0
PPV	7	94.74 (84.91-98.29)	0
NPV	7	99.98 (99.83-100)	0
FPR	7	0.07 (0.02-0.22)	0
Accuracy	7	99.82 (99.61-99.92)	0
DOR ^a	7	6586.60 (1696.39-25573.83);	0
		P < .0001	
Trisomy 18			
Sensitivity	5	90.00 (67.62-97.49)	0
Specificity	6	99.95 (99.80-99.99)	0
PPV	5	90.00 (67.62-97.49)	0
NPV	6	99.95 (99.80-99.99)	0
FPR	6	0.05 (0.01-0.20)	0
Accuracy	6	99.83 (99.61-99.92)	0
DOR ^a	5	3606.40 (710.38-18308.67)	0
Trisomy 13			
Sensitivity	4	80.00 (30.90-97.28)	0
Specificity	5	99.93 (99.41-99.99)	0
PPV	4	81.75 (1.82-99.91)	0
NPV	5	99.97 (99.82-100)	0
FPR	5	0.07 (0.01-0.59)	0
Accuracy	5	99.76 (99.39-99.91)	20.7
DOR ^a	4	1350.78 (206.12-8852.31)	0

Results do not include studies without adequate data to include in meta-analyses.

DOR, diagnostic odds ratio; FPR, false positive rate; NIPS, noninvasive prenatal screening; NPV, negative predictive value; PPV, positive predictive value.

^aData presented as odds ratio.

pregnancy had NIPS results of suspected T21 in only 1 twin; this finding was confirmed through karyotype and a selective feticide was performed. A live birth was reported for the other twin. Trisomy 7 (T7) was suspected in 1 twin from a monochorionic diamniotic pregnancy, with normal NIPS findings for the other. Twin-to-twin transfusion syndrome was also present and resulted in fetal demise of the receipt twin at 25 weeks and a live birth of the donor twin at 28 weeks. Importantly, the T7 finding was not confirmed through diagnostic testing; the authors hypothesized that the T7 NIPS result was likely a mosaic artifact.³⁰

A report from a commercial laboratory presented the results of 30,826 mixed-risk twin samples submitted between October 2011 and December 2017.³² Of these, 635 had positive NIPS results: T21, n = 435; T18, n = 138; T13, n = 62. Despite the large numbers of positive NIPS results, confirmation of findings was communicated by the submitting physician for only 27, 13, and 10 samples, respectively. The authors further describe an "Enhanced Sequencing" option, selected by more than half of individuals, to screen for additional aneuploidies and microdeletion syndromes. Seven samples had a positive NIPS result for trisomy 16 and 6 samples received positive results for microdeletions. Four of the microdeletion results were reported to have diagnostic testing; 3 were TPs and 1 was FP. The other 2 cases were not confirmed diagnostically but were reported to be consistent clinically with the suspected microdeletion syndrome. All of the samples positive for microdeletions were in higher-risk samples (ie, ultrasound finding or other high risk). Of the 7 suspected cases of T16, 6 were reported as fetal (cotwin) demise after NIPS or as spontaneous abortion. Of these, 2 were reported to be FP after karyotyping was completed from amniocentesis.³²

Overall, few studies have comprehensively evaluated the use of NIPS for twin gestations. The results from our metaanalyses show NIPS performance in this population are generally comparable to performance in singleton pregnancies for T21, T18, and T13. Results for other aneuploidies or microdeletions were less frequently reported and no firm conclusions can be drawn about the performance of NIPS for these outcomes. Very limited data is available on triplets or higher order multiple gestations.

SCAs

In total, 33 studies reported on identification of SCAs and 28 provided sufficient data to include in random-effects meta-analyses (Supplemental Material). We analyzed studies reporting on any SCA together (overall) and separately for the specific SCA (eg, XXX).

For screening of all SCAs, our meta-analyses found sensitivity, specificity, NPV, and high accuracy of NIPS; however, the PPV for SCAs was <50%, substantially lower than the PPV of NIPS for T21. When considering individual SCAs separately, we observed similar highperformance metrics for sensitivity, specificity, accuracy, NPV, and DOR, but PPVs ranged from 30% (45, X) to 74% (47, XXY; 47, XYY). The number of studies contributing to these analyses was generally small, although most studies reported sufficient data to include in meta-analyses for PPV. FPRs were similarly variable (Supplemental Material).

In addition to the 28 studies included in meta-analyses, 5 studies reported relevant SCA outcomes for NIPS.^{24,27,29,34,35} DiNonno et al³⁴ described NIPS performance for common trisomies and SCAs from more than 1 million test results generated from 2014 to 2017, comparing PPVs obtained in individuals of advanced maternal age to those younger than 35 years. They found combined NIPS positive result rates for T18, T13, and 45, X declined over the 4-year period, commensurate with the uptake of NIPS by younger individuals without prior risk factors. Comparing results only for those with confirmation through ultrasound, pregnancy loss, or diagnostic testing, the PPV for 45, X in individuals aged <35 years was 92.0% (95% CI = 87.5%-94.9%) vs 88.5% (95% CI = 80.1%-93.6%) in individuals aged 35 years old or older.³⁴

SCAs from a mixed-risk population from Germany was reported by Tekesin et al.²⁴ Among the 19 individuals with a suspected SCA, only 8 had confirmatory testing through either chorionic villus sampling (n = 2) or amniocentesis (n = 6). Of the 8, 6 were reported as normal, whereas the single case of XXY and 1 of the 6 cases of XXX were confirmed. Of the 11 individuals who did not receive confirmatory diagnostic testing, 1 of the 6 suspected cases of Turner syndrome was confirmed, 4 were reported as normal, and 6 did not undergo genetic testing.²⁴

Snyder et al³⁵ presented the results from a retrospective analysis of 113,415 NIPS tests. The authors identified 36 suspected cases of a single autosomal trisomy (T21, T18, or T13) combined with an SCA. For T21 + SCA, 11 cases had clinical outcomes: 1 was fully concordant (T21, XXX), 8 were partially concordant (T21, 45, X), and 2 cases were completely discordant. Several suspected cases of T18 and T13 were also observed in this population in conjunction with a common trisomy. Full concordance was observed in a case of T18, XXY. However, all of the positive results were obtained from individuals with a high risk.

RATs

In total, 18 studies reported data pertaining to identification of RATs. Only 3 of these adequately reported data to enable determination of full test performance characteristics^{19,26,36} (Supplemental Material). At a minimum, 17 of the included studies reported the numbers of TP and FP. For each rare chromosomal trisomy, at least 1 study reported a screen-positive result. However, in those with a positive result, those with no confirmatory testing and/or missing from follow up ranged from 0% to 100%. Consequently, quantitative analysis was performed for all RATs together and results pertaining to specific trisomies are narratively described (Supplemental Material).

CNVs

In total, 17 studies reported the ability of NIPS to detect CNVs (microdeletions or microduplications). The sample sizes in each study were relatively small and the sensitivities varied greatly. Tekesin et al²⁴ reported 7 cases that screened positive for DiGeorge syndrome (22q11.2 deletion), yet none were confirmed via diagnostic testing. Yin et al³⁷ confirmed TP CNVs in 10 of the 12 cases tested through amniocentesis, whereas in the study by Zheng et al,³⁶ none of the 3 CNVs were confirmed.

Three additional studies reported a relatively low number of samples with CNVs detected.^{21,30,38} Taken together, they detected 14 CNVs, of which 5 were TP and 9 were FP. Reported overall sensitivity to detect CNVs ranged from $69.44\%^{29}$ to 80.56%.³⁹ When stratified by CNV size, in general, the sensitivity to detect larger CNVs was better than for detecting smaller CNVs. The sensitivity to detect CNVs larger than 5 megabases (Mb) was >90%, whereas for those smaller than 5 Mb, it was 68.42%.³⁹ In the study by Ye et al,⁴⁰ the sensitivity to detect CNVs larger than 2 Mb (81.58%, 31/38) was higher than for detecting those smaller than 2 Mb (21.43\%, 3/14).

In a study by Lin et al²⁷ with follow up of 10,975 negative NIPS results, there were 166 cases with adverse pregnancy outcome, of which 8 had diagnostic testing. Four cases of chromosome abnormalities were confirmed, including 2 results showing microdeletions/ microduplications.

Liang et al⁴¹ was able to stratify PPV on the basis of syndromes (n = 32), 93% (DiGeorge syndrome), 68% (22q11.22 microduplication), 75% (Prader-Willi/Angelman syndrome), and 50% (cri-du-chat syndrome). For the remaining genome-wide CNVs (n = 88), combined PPVs were 32% (CNVs \geq 10 Mb) and 19% (CNVs <10 Mb). Chen et al³¹ showed an overall PPV of 28.99% with the best sensitivity between 5 and 10 Mb in size (20.83% for \leq 5 Mb, 50.00% for 5 to 10 Mb, 27.27% for >10 Mb) for CNVs. Schwartz et al⁴² had the largest sample size of screen-positive CNV cases (N = 349) with an overall PPV of 9.2%.

A large study (N = 80,449) of NIPS for a panel of microdeletion syndromes (22q11.2 deletion, 1p36 deletion, cri-du-chat, Prader-Willi, Angelman) was reported from a laboratory sample after revision of their algorithm.⁴³ In >42,000 individuals screened for the full panel, in those without any abnormal ultrasound findings, PPV was 18.5% for 22q11.2 deletion, 50% for 1p36 deletion, 50% for cri-du-chat, 0% for Prader-Willi, and 10% for Angelman syndromes; however, there was incomplete follow up of positive NIPS results. For individuals with abnormal ultrasound findings identified before NIPS, PPVs were significantly higher: 100% for 22q11.2, 1p36 deletion, and cri-du-chat syndromes. The authors report that the revision to their algorithm both improved PPV and reduced FPRs for these microdeletion syndromes.⁴³

Psychosocial outcomes

There is limited literature regarding psychosocial outcomes after NIPS. In a study of 40 participants who received positive NIPS results, a significant portion regretted their decision to have NIPS in light of the stress and additional medical interventions they experienced. However, this was a biased sampling of individuals who posted in online forums.⁴⁴ Eight participants expressed positive opinions, 20 had mixed feelings, and 12 had negative opinions.⁴⁴ In another study that assessed the effect of genetic counseling after positive NIPS results, 76% of participants accepted confirmatory diagnostic testing, whereas 24% elected not to proceed with followup diagnostic testing.⁴⁵ Given the minimal evidence, no conclusions can be drawn about the impact of NIPS on psychosocial outcomes.

Maternal conditions

We identified 14 studies that included outcomes for maternal conditions (Supplemental Material). Of these, 8 were specifically directed at reporting maternal outcomes, the others were reported as part of a larger NIPS study. One study³⁵ included cases that were published in another study.⁴⁶ The predominant reported results were maternal neoplasms (n = 5 studies) and maternal X chromosome abnormalities (n = 3 studies). Other outcomes included actionable maternal CNVs (n = 4 studies), Duchenne muscular dystrophy gene CNV identification (n = 1), and various structural chromosomal abnormalities, such as mosaicism for an interstitial deletion and an unbalanced translocation. In a study describing the implementation of NIPS as a universal screening method in Belgium, reported maternal imbalances were found in 0.32% of NIPS results.²⁰ Another study similarly identified 9 clinically actionable CNVs in 3053 samples (0.29%).²⁹ In this study, 8 of 9 patients had symptoms of the identified disorders with 1 of 9 asymptomatic with a genetic diagnosis of Ehlers-Danlos syndrome.²⁹ Two confirmed maternal cases of 22q11.2 deletion were identified in a large laboratory study of NIPS from the United States for a panel of 5 microdeletion syndromes.⁴³ One additional maternal case was unconfirmed in the parent; however, the individual had learning disabilities and tetralogy of Fallot, which are both associated with 22q11.2 deletion syndrome.⁴³ Neoplasms were identified by noting unique gains and losses of multiple CNVs across chromosomes; neoplasms sometimes included uterine myomas and therefore did not consistently represent a malignancy. The Belgian population-level study reported maternal neoplasms were identified in 0.008% of NIPS results.²⁰ Although X chromosome anomalies were identified, including 2 interstitial X deletions,⁴⁷ 47, XXX,^{46,48} and a mosaic 45, X/47, XXX complement, it is unclear if these findings had any effect on maternal health. Maternal outcomes were consistently a rare finding in NIPS and follow up with clinical outcomes was not reported.

Uptake of diagnostic testing

We identified 10 studies that included outcomes for uptake of diagnostic testing.^{18,20,29,49-55} Some studies examined the rate of uptake of diagnostic testing in those screening positive on NIPS whereas others looked at the rate of uptake of diagnostic testing over time, comparing the period before NIPS was available with the period after NIPS was available.

Screening for chromosome 7 an euploidy as part of "supplemental NIPT" in 31,250 patients found 35 at high risk.⁵⁰ Of those, 25 patients (71%) chose diagnostic testing and 2 pregnancies had CNVs involving part of chromosome $7.^{36}$ A general screening of 2998 patients found 278 with high-risk results. Of those, 98.5% received diagnostic

Figure 1 Percent reduction of diagnostic testing after noninvasive prenatal screening implementation.

testing, whereas only 4 patients did not.²⁹ Because neither of these studies looked at diagnostic testing over time, they are not included in Figure 1. In a South Korean medical center, the mean number of amniocenteses performed before NIPS was 8.8 per month that decreased to 4.1 per month after offering NIPS.⁵¹ Because the raw data on total numbers or percentages of procedures was not provided, this study was not included in Figure 1.

One of these studies was limited to modeled data. In the model, if all participants received an amniocentesis after a "positive" result, there would be a 55% reduction in the rate of amniocentesis performed when initially screened with NIPS.⁴⁹ The total number of diagnostic procedures performed was reported to drop from 1176 in 2009 to 846 in 2015 and then 363 in 2018, likely due to the introduction and subsequent growing use of NIPS,⁵² although the total number of patients screened was not provided. In another study, the rate of diagnostic testing dropped from 3.5% (before implementation of NIPS) to 2.4% (with the use of a contingent model incorporating NIPS), although, this was not statistically significant.⁵³ In the high-risk group, 83.3% (25/30) had a diagnostic test. In the intermediate-risk group only 12.2% (6/49) chose diagnostic testing, whereas 75.5% opted for NIPS (37/49). Costa et al¹⁸ described that use of NIPS decreased the potential rate of diagnostic procedures from 8.2% with maternal serum screening (MSS) alone to 1.9% with a combination of NIPS and MSS. In this group of 789 patients, there were 15 diagnostic procedures performed, with potentially an additional 50 procedures in patients receiving a high-risk MSS, but a low-risk NIPS. In another study, they postulated that the rate of diagnostic testing could potentially be as high as 6.8% (79/1165) with traditional screening, whereas in their study, overall it was 2% (23/1165) with 1.2% (14/1151) of individuals with a negative NIPS result choosing diagnostic testing.⁵⁴ In the final study, Garite et al⁵⁵ found an overall 70.8% (calculated for this publication) decline in procedures (73% decrease in amniocenteses and 62% decrease in chorionic villus sampling) between the first 6 months of the control period and the last 6 months of the study period.

Although a significant majority of patients who receive a high-risk result do choose to pursue diagnostic testing, overall, it appears that the total number of patients choosing diagnostic testing has decreased over time ranging from a 31% to 79% decrease (see Figure 1) depending on the study. The findings from the Belgian population study comparing 2013, before NIPS, uptake of diagnostic testing to 2018, after universal NIPS, found a 52% reduction, which was larger than would be expected on the basis of the incidence of T21 alone.²⁰ This choice of whether to pursue diagnostic testing may vary based on the specific aneuploidy, availability of genetic counseling, and personal values and decision-making, however, the data were not available to assess this level of granularity.

Economic impact

Of the 10 studies that reported outcomes pertaining to the cost-effectiveness of NIPS performed in a general-risk population, only 1 was done with the societal perspective with a time horizon of the maternal lifespan, in a theoretical cohort of 4 million individuals in the United States.⁵⁶ In this study, the authors compared NIPS to detect T13/T18/T21 with NIPS for the common trisomies and 5 microdeletion syndromes. If the cost to report the microdeletions added \$47 or less to the cost of NIPS for the main trisomies, NIPS plus microdeletion screening increased quality-adjusted life years by 977, decreased overall costs by \$90.9 million per year, and would result in fewer neonatal deaths and second trimester miscarriages.⁵⁶ The remaining studies compared NIPS, either as a universal screening method or as a contingent method presented after some initial risk evaluation. Notably, these studies were nearly all performed from a public payer perspective and limited the time horizon to the testing duration or length of pregnancy only (Supplemental Material).

Test failure

Although not an original KQ for this SER, the guideline panel requested information regarding test failure rates, given their known association with aneuploidy. Unfortunately, this was not reported in a standard manner across studies. Some reported only the overall failure (or no-call) rate without mention of redraws, whereas others included their redraw failure (or success) rate, with some even more granular, separating out failures from the first test compared with failures from the second. Estimated failure/no-call rate of NIPS was 0.85% (95% CI = 0.58%-1.23%) in 31 studies (Supplemental Material). Although heterogeneity was considerable ($I^2 = 99\%$), no subgroup analyses were performed owing to the inconsistency and variability of the studies. Overall, NIPS failure rate appears relatively infrequent; however, this metric may be subject to considerable publication bias.

Change in birth rates

We identified a single study that reported on a change in birth rates after implementation of universal NIPS. Belgium, which was the first country to implement universal access and reimbursement of NIPS as a first-tier prenatal screening test, compared the rate of trisomy 21 live births from 2014 to those in 2018. The rate decreased from 0.06% of all live births to 0.04% during the time period in question, a decline that the authors could not explain through population-level changes responsible for a concurrent rise in trisomy 21 miscarriages. They posit that the reduction may result from pregnancy termination combined with the improved FPRs for NIPS, as compared with first trimester combined screening.²⁰

Risk of bias assessment

We observed no evidence of publication bias across most outcomes, although there was suspicion of publication bias for test failure rate. Risk of bias for individual studies reporting the clinical or diagnostic performance outcomes uncovered serious risk of bias for confounding and missing data (ROBINS-I) and patient selection and flow and timing (QUADAS2) domains (Supplemental Material). Risk of bias was assessed across 20 domains identified in the Consolidated Health Economic Evaluation Reporting Standards checklist¹² and Drummond criteria.⁵⁷ Most compared NIPS with at least 1 option without NIPS. Except for the Avram et al⁵⁶ study, none reported a discount rate or a time horizon beyond the duration of pregnancy. An overall risk of bias was not calculated for the economic studies; however, few domains received a high risk of bias judgment for more than a single study. Unreported and under-reported data was a significant concern (Supplemental Material).

Discussion

This assessment validates that NIPS with cfDNA is the most sensitive and specific screening test for fetal Down syndrome, T13, and T18 in both singleton and twin pregnancies. In contrast to conventional serum analyte screening, it can identify maternal conditions, such as aneuploidies and malignancies. Although rare, maternal aneuploidy findings are only possible with cfDNA screening. Other outcomes, such as RATs and CNVs (predominantly deletions) in both fetus and mother can be identified. However, the clinical utility of these findings is limited, given the rarity of these events and the lack of systematic follow up of clinical outcomes.

Several recent reviews and meta-analyses have been published on NIPS.^{4,58-62} Compared with traditional screening, the 2019 health technology assessment by Health Quality Ontario determined that NIPS was effective in a general or average-risk population to screen for T21, T18, and T13.⁵⁸ Our results similarly show the high performance of NIPS to screen for the common trisomies in a general population. Of the studies that used meta-analysis of NIPS to screen for SCAs, we observed that several included highrisk population studies in their analyses and their results may not be as generalizable to an average-risk population. Despite this difference, we observed relatively consistent results with our meta-analyses for SCAs to these published studies, supporting our conclusion that NIPS is also effective and accurate for SCA screening.

Our SER and meta-analysis present several strengths and limitations. Building on existing evidence, we limited our literature search for several KQs to obtain the most recent data. We considered the utility of NIPS beyond diagnostic performance by including the uptake of diagnostic tests, the impact on individuals' psychosocial status, and the identification of maternal conditions. The large number of studies included in our SER is a considerable strength.

Nevertheless, there are some limitations to our study. First, although we revised our search query to account for the variety of definitions which describes NIPS in the literature, it is possible we did not identify all relevant studies. Second, despite prespecifying an analysis plan to address expected heterogeneity, there may be other variables that we did not include in our sensitivity analyses that contribute to the variation observed between studies. Third, we included studies in our meta-analyses for which the reviewers were confident in the data reported. It is possible that this confidence was misplaced, particularly for TNs, causing us to inappropriately include studies in our quantitative analyses. Furthermore, our meta-analyses did not use the bivariate model, as detailed in Reitsma et al.⁶³ Although there was sparse data for many of the reported studies, we re-evaluated our analyses (data not shown) and determined that the difference between our results and the bivariate model were small (eg, T21 sensitivity_{bivariate} = 97.6% [95% CI = 96.0%-98.6%] compared with reported results [98.8%, 95% CI = 97.8%-99.3%]), although the area under the curve remained consistent regardless of the model (area under the $curve_{T21} = 99\%$). Finally, although our research questions were developed to compare NIPS with conventional serum analyte screening, we did not identify any studies reporting direct comparisons that met our inclusion criteria.

Limitations of the included studies themselves were numerous. It was often difficult to distinguish between low- and high-risk cohorts in individual studies. Information on the complete ascertainment of cases is lacking, given that there is a lack of complete follow up to identify TNs and FNs through diagnostic testing or postnatally, although these numbers are expected to be small. Studies mostly relied on local providers to evaluate fetal outcomes through physical assessment or a chart review performed to determine the newborn phenotype that may introduce error. A few studies used more objective means of obtaining this data, such as national databases. A systematic follow up of individuals with low-risk NIPS results would provide a more accurate picture of the TNs and were unavailable for review. Furthermore, the laboratory techniques used, including sequencing methods, or cutoffs for test failures or screen positives are not standardized, may differ more owing to the applications in other countries, and the details were inconsistently reported. These failures can be due to a variety of factors. Some may have issues with the specimen itself such as inadequate sample volume or coagulation and were therefore unable to complete the sequencing process. Others may successfully complete sequencing but have no result available after an issue with analysis. This can be due to a variety of reasons, including low fetal fraction, with minimum requirements varying between laboratories and some using a method to further amplify the fetal fraction.⁶⁴ A redraw can be recommended, in which a new blood specimen is collected. In general, increased gestational age (over 20 weeks) correlates with increased fetal fraction, so collection of a specimen later in pregnancy may overcome the issue of low fetal fraction, although this would reduce the clinical utility of screening. Other issues include sample contamination, high sequence homology between maternal and fetal, or other quality control metrics.

There was limited literature available to evaluate the psychosocial outcome of individuals undergoing NIPS. Although multiple studies were identified that surveyed attitudes toward NIPS, very few were available in which NIPS was actually performed, patients received results, and then were assessed for levels of anxiety, stress, and/or regret in a systematic manner. Additional studies with a systematic evaluation approach on a large cohort is needed to better understand the psychosocial impact of NIPS, which may further elucidate the uptake (or lack thereof) of NIPS in the general population. Moreover, the psychosocial reception of NIPS may also be affected by the cost for patients and payer coverage. Economic analyses based in the United States from the patient perspective are lacking; evidence from national health care systems such as Belgium, Canada, and the Netherlands suggest most pregnant individuals find NIPS as a primary screening method for fetal chromosomal aneuploidies acceptable and have not identified significant negative impact of NIPS on psychosocial outcomes.

As described in this SER, the performance of NIPS is significantly poorer when targeting RATs and CNVs than when looking for the common trisomies. This is likely because of the rarity of RATs and the insufficient data available to properly develop a method that can distinguish between clinically relevant RATs found in the fetus vs confined placental mosaicism. In addition, the NIPS technologies were originally designed to detect the common trisomies, and not to identify small CNVs. Deletions are more difficult to identify in the background of a normal maternal karyotype than are trisomies. Large collaborative studies may be needed to generate a sufficient cohort to develop a singular method with adequate sensitivity and specificity for findings other than common trisomies. Additional outcome studies are needed to understand the unique clinical value of NIPS, specifically for SCAs, RATs, and CNVs when compared with other approaches.

Comparisons between studies are difficult, because there is no standardized testing method, fetal fraction cutoffs and calculation methods vary, and there are different initial gestational ages for testing. Further delineation of sensitivity and specificity of NIPS methodologies by independent researchers is needed to determine the best modality and to improve the diagnostic utility. Ideally, studies would include a comprehensive ascertainment of clinical outcomes to calculate the TN rate. This information would help to develop best practice guidelines and improve patient care. Despite the large number of studies included in our analysis, we identified few that considered the psychosocial impact of NIPS, particularly in light of additional information (eg, maternal conditions) that would not be captured using traditional screening techniques.

Conclusion

Worldwide, and across all laboratory platforms, NIPS using cfDNA is the most effective screening test for the autosomal T21, T18, and T13 in singleton and twin gestations, with both high detection and low FPRs. Although less accurate for SCAs, RATs, and CNVs, it is the only laboratory-based prenatal screen that can identify these at all. The incidental identification of maternal conditions is rare and makes for potentially difficult patient counseling. Finally, no conclusions can be drawn with respect to the potential psychosocial effects of this test on the screened population. Despite its accuracy, NIPS using cfDNA is a screening test for which confirmation of a screen-positive test with a diagnostic procedure remains indicated.

Conflict of Interest

N.C.R. is a consultant for The Jackson Laboratories and the ObG Project. E.S.B. and M.L.L. serve as directors in, and D.L. is employed by, clinical laboratories that perform a breadth of genetic and genomic analyses on a fee-for-service basis. All other authors declare no conflicts of interest.

Additional Information

The online version of this article (https://doi.org/10.1016/j. gim.2022.03.019) contains supplementary material, which is available to authorized users.

Authors

Nancy C. Rose^{1,†}, Elizabeth S. Barrie^{2,†}, Jennifer Malinowski³, Gabrielle P. Jenkins³, Monica R. McClain⁴, Danielle LaGrave^{5,‡}, Marco L. Leung^{6,7,8,‡}; on behalf of the ACMG Professional Practice and Guidelines Committee^{3,*}

Affiliations

¹Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, School of Medicine, University of Utah, Salt Lake City, UT; ²Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA; ³American College of Medical Genetics and Genomics, Bethesda, MD; ⁴Genesis Research, Hoboken, NJ; ⁵ARUP Laboratories, Salt Lake City, UT; ⁶The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; ⁷Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH; ⁸Departments of Pathology and Pediatrics, The Ohio State University College of Medicine, Columbus, OH

References

- Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. *Genet Med.* 2011;13(11):913–920. http://doi.org/10.1097/GIM.0b013e3182368a0e.
- Zhao C, Tynan J, Ehrich M, et al. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. *Clin Chem.* 2015;61(4):608–616. http://doi.org/10.1373/clinchem.2014.233312.
- Gregg AR, Skotko BG, Benkendorf JL, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. *Genet Med.* 2016;18(10):1056–1065. http://doi.org/10.1038/gim.2016.97.
- Gil MM, Accurti V, Santacruz B, Plana MN, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. *Ultrasound Obstet Gynecol.* 2017;50(3):302–314. http://doi.org/10.1002/uog.17484.
- Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. *Obstet Gynecol.* 2012;119(5):890–901. https://doi.org/10.1097/AOG.0b013e31824 fb482.
- Zhang H, Gao Y, Jiang F, et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. *Ultrasound Obstet Gynecol.* 2015;45(5):530–538. https://doi.org/10.1 002/uog.14792.
- Bianchi DW, Parker RL, Wentworth J, et al. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med. 2014;370(9):799–808. http://doi.org/10.1056/NEJMoa1311037.
- American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics. Committee on Genetics, Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG Practice Bulletin, Number 226. *Obstet Gynecol.* 2020;136(4):e48–e69. http://doi.org/10.1097/AOG.00000000000 4084.
- Palomaki GE, Chiu RWK, Pertile MD, et al. International Society for Prenatal Diagnosis Position Statement: cell free (cf)DNA screening for Down syndrome in multiple pregnancies. *Prenat Diagn*. 2021;41(10):1222–1232. http://doi.org/10.1002/pd.5832.
- 10. Judah H, Gil MM, Syngelaki A, et al. Cell-free DNA testing of maternal blood in screening for trisomies in twin pregnancy: updated

cohort study at 10-14 weeks and meta-analysis. *Ultrasound Obstet Gynecol.* 2021;58(2):178–189. http://doi.org/10.1002/uog.23648.

- Brennan SE, Munn Z. PRISMA 2020: a reporting guideline for the next generation of systematic reviews. *JBI Evid Synth*. 2021;19(5):906–908. http://doi.org/10.11124/JBIES-21-00112.
- Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *BMJ*. 2013;346:f1049. http://doi.org/10.1136/bmj.f1049.
- Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. 2016;355:i4919. http://doi.org/10.1136/bmj.i4919.
- Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med.* 2011;155(8):529–536. http://doi.org/10.7326/0003-4819-155-8-201110180-00009.
- Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. *JAMA*. 2006;295(6):676–680. http://doi.org/10.1001/jama.295.6.676.
- Guy GP, Hargrave J, Dunn R, et al. Secondary non-invasive prenatal screening for fetal trisomy: an effectiveness study in a public health setting. *BJOG*. 2021;128(2):440–446. http://doi.org/10.1111/1471-0528.16464.
- Kypri E, Ioannides M, Touvana E, et al. Non-invasive prenatal testing of fetal chromosomal aneuploidies: validation and clinical performance of the veracity test. *Mol Cytogenet*. 2019;12:34. http://doi.org/10.1186/ s13039-019-0446-0.
- Costa JM, Letourneau A, Favre R, et al. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study. *Genet Med.* 2018;20(11):1346–1353. http://doi.org/10.1038/ gim.2018.4.
- Lai Y, Zhu X, He S, et al. Performance of cell-free DNA screening for fetal common aneuploidies and sex chromosomal abnormalities: a prospective study from a less developed autonomous region in Mainland China. *Genes (Basel)*. 2021;12(4):478. http://doi.org/10.3390/ genes12040478.
- Van Den Bogaert K, Lannoo L, Brison N, et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. *Genet Med.* 2021;23(6):1137–1142. http://doi.org/10.1038/s41436-021-01101-4.
- Basaran S, Has R, Kalelioglu IH, et al. Follow-up studies of cf-DNA testing from 101 consecutive fetuses and related ultrasound findings. *Ultraschall Med.* 2020;41(2):175–185. http://doi.org/10.1055/a-0651-0459.
- Petersen AK, Cheung SW, Smith JL, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. *Am J Obstet Gynecol.* 2017;217(6):691.e1–691.e6. http://doi.org/10.1016/j.ajog.2017.10.005.
- Sánchez-Durán MÁ, Bernabeu García A, Calero I, et al. Clinical application of a contingent screening strategy for trisomies with cellfree DNA: a pilot study. *BMC Pregnancy Childbirth*. 2019;19(1):274. http://doi.org/10.1186/s12884-019-2434-0.
- Tekesin I. Cell-free DNA testing in routine practice: characterisation of a cohort with positive results for trisomies, sex chromosome anomalies and microdeletions. *Geburtshilfe Frauenheilkd*. 2021;81(1):81–89. http://doi.org/10.1055/a-1226-6538.
- Kagan KO, Sroka F, Sonek J, et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. *Ultrasound Obstet Gynecol.* 2018;51(4):437–444. http://doi.org/10.1002/uog.18905.
- 26. Chen Y, Yu Q, Mao X, Lei W, He M, Lu W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. *Hum Genomics*. 2019;13(1):60. http:// doi.org/10.1186/s40246-019-0250-2.
- Lin Y, Liang D, Wang Y, et al. Analyzing false-negative results detected in low-risk non-invasive prenatal screening cases. *Mol Genet Genomic Med.* 2020;8(4):e1185. http://doi.org/10.1002/mgg3. 1185.

- Luo Y, Hu H, Jiang L, et al. A retrospective analysis the clinic data and follow-up of non-invasive prenatal test in detection of fetal chromosomal aneuploidy in more than 40,000 cases in a single prenatal diagnosis center. *Eur J Med Genet*. 2020;63(9):104001. http://doi.org/ 10.1016/j.ejmg.2020.104001.
- 29. Oneda B, Sirleto P, Baldinger R, et al. Genome-wide non-invasive prenatal testing in single- and multiple-pregnancies at any risk: identification of maternal polymorphisms to reduce the number of unnecessary invasive confirmation testing. *Eur J Obstet Gynecol Reprod Biol.* 2020;252:19–29. http://doi.org/10.1016/j.ejogrb.2020.05.070.
- 30. Yao H, Gao Y, Zhao J, et al. Genome-wide detection of additional fetal chromosomal abnormalities by cell-free DNA testing of 15,626 consecutive pregnant women. *Sci China Life Sci.* 2019;62(2):215–224. http://doi.org/10.1007/s11427-017-9344-7.
- Chen M, Jiang F, Guo Y, et al. Validation of fetal DNA fraction estimation and its application in noninvasive prenatal testing for aneuploidy detection in multiple pregnancies. *Prenat Diagn*. 2019;39(13):1273–1282. http://doi.org/10.1002/pd.5597.
- 32. Dyr B, Boomer T, Almasri EA, et al. A new era in aneuploidy screening: cfDNA testing in >30,000 multifetal gestations: experience at one clinical laboratory. *PLoS One*. 2019;14(8):e0220979. http://doi. org/10.1371/journal.pone.0220979.
- 33. Norwitz ER, McNeill G, Kalyan A, et al. Validation of a single-nucleotide polymorphism-based non-invasive prenatal test in twin gestations: determination of zygosity, individual fetal sex, and fetal aneuploidy. *J Clin Med.* 2019;8(7):937. http://doi.org/10.3390/jcm8070937.
- 34. DiNonno W, Demko Z, Martin K, et al. Quality assurance of noninvasive prenatal screening (NIPS) for fetal aneuploidy using positive predictive values as outcome measures. J Clin Med. 2019;8(9):1311. http://doi.org/10.3390/jcm8091311.
- Snyder HL, Curnow KJ, Bhatt S, Bianchi DW. Follow-up of multiple aneuploidies and single monosomies detected by noninvasive prenatal testing: implications for management and counseling. *Prenat Diagn*. 2016;36(3):203–209. http://doi.org/10.1002/pd.4778.
- Zheng J, Lu H, Li M, et al. The clinical utility of non-invasive prenatal testing for pregnant women with different diagnostic indications. *Front Genet*. 2020;11:624. http://doi.org/10.3389/fgene.2020.00624.
- Yin L, Tang Y, Lu Q, Pan A, Shi M. Application value of NIPT for uncommon fetal chromosomal abnormalities. *Mol Cytogenet*. 2020;13:39. http://doi.org/10.1186/s13039-020-00508-z.
- Kagan KO, Hoopmann M, Pfaff T, et al. First trimester screening for common trisomies and microdeletion 22q11.2 syndrome using cell-free DNA: a prospective clinical study. *Fetal Diagn Ther*. 2020;47(11):841–852. http://doi.org/10.1159/000510069.
- Yu D, Zhang K, Han M, et al. Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low-pass whole-genome sequencing. *Mol Genet Genomic Med.* 2019;7(6):e674. http://doi.org/10.1002/mgg3.674.
- Ye X, Lin S, Song X, et al. Identification of copy number variants by NGS-based NIPT at low sequencing depth. *Eur J Obstet Gynecol Reprod Biol.* 2021;256:297–301. http://doi.org/10.1016/j.ejogrb.2020. 11.026.
- Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. *Genet Med.* 2019;21(9):1998–2006. http://doi.org/10.1038/s41436-019-0467-4.
- 42. Schwartz S, Kohan M, Pasion R, Papenhausen PR, Platt LD. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases. *Prenat Diagn.* 2018;38(3):210–218. http://doi.org/10.1002/pd.5217.
- Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a singlenucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions. *Clin Genet*. 2018;93(2):293–300. http://doi.org/10.1111/cge.13098.
- 44. Gammon BL, Jaramillo C, Riggan KA, Allyse M. Decisional regret in women receiving high risk or inconclusive prenatal cell-free DNA screening results. *J Matern Fetal Neonatal Med.* 2020;33(8):1412–1418. http://doi.org/10.1080/14767058.2018.1519541.

- Zhou Q, Zhu ZP, Zhang B, Yu B, Cai ZM, Yuan P. Clinical features and pregnancy outcomes of women with abnormal cell-free fetal DNA test results. *Ann Transl Med.* 2019;7(14):317. http://doi.org/10.21037/ atm.2019.06.57.
- Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. *JAMA*. 2015;314(2):162–169. http://doi.org/10.1001/jama.2015.7120.
- Brison N, Van Den Bogaert K, Dehaspe L, et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. *Genet Med.* 2017;19(3):306–313. http:// doi.org/10.1038/gim.2016.113.
- Martin KA, Samango-Sprouse CA, Kantor V, et al. Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing. *Am J Obstet Gynecol MFM*. 2020;2(3):100152. http://doi.org/10.1016/j.ajogmf.2020.100152.
- Crimmins S, Doyle L, Slejko J, Kopelman JN, Turan O. QUAD versus cfDNA in an urban population in the second trimester for detection of trisomy 21: a cost sensitivity analysis. *J Matern Fetal Neonatal Med.* 2017;30(19):2334–2339. http://doi.org/10.1080/14767058.2016. 1247800.
- Qi Y, Yang J, Hou Y, et al. The significance of trisomy 7 mosaicism in noninvasive prenatal screening. *Hum Genomics*. 2019;13(1):18. http:// doi.org/10.1186/s40246-019-0201-y.
- Noh JJ, Ryu HM, Oh SY, Choi SJ, Roh CR, Kim JH. A two-year experience of non-invasive prenatal testing (NIPT) at an urban tertiary medical center in South Korea. *Taiwan J Obstet Gynecol.* 2019;58(4):545–551. http://doi.org/10.1016/j.tjog.2019.05.021.
- Srebniak MI, Knapen MFCM, Govaerts LCP, et al. Social and medical need for whole genome high resolution NIPT. *Mol Genet Genomic Med.* 2020;8(1):e1062. http://doi.org/10.1002/mgg3.10 62.
- Gomes HH, Lourenço I, Ribeiro J, Martins D, Ribeiro R, Francisco C. Cell-free DNA and contingent screening: our first year. J Gynecol Obstet Hum Reprod. 2019;48(7):509–514. http://doi.org/10.1016/j. jogoh.2019.04.001.
- Langlois S, Johnson J, Audibert F, et al. Comparison of first-tier cellfree DNA screening for common aneuploidies with conventional publically funded screening. *Prenat Diagn*. 2017;37(12):1238–1244. http://doi.org/10.1002/pd.5174.
- 55. Garite TJ, Combs CA, Maurel K, Abril D, Das A. The impact of cfDNA screening on the frequency of invasive procedures in a geographically diverse private network. *Am J Perinatol.* 2017;34(14):1430–1435. http://doi.org/10.1055/s-0037-1603992.
- Avram CM, Shaffer BL, Sparks TN, Allen AJ, Caughey AB. Cell-free fetal DNA screening for detection of microdeletion syndromes: a cost-effectiveness analysis. J Matern Fetal Neonatal Med. 2021;34(11):1732–1740. http://doi.org/10.1080/14767058.2019.164 7161.
- Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. *BMJ*. 1996;313(7052):275–283. http://doi. org/10.1136/bmj.313.7052.275.
- Health Quality Ontario. Noninvasive prenatal testing for trisomies 21, 18, and 13, sex chromosome aneuploidies, and microdeletions: a health technology assessment. *Ont Health Technol Assess Ser.* 2019;19(4):1–166.
- 59. Gil MM, Galeva S, Jani J, et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. *Ultrasound Obstet Gynecol.* 2019;53(6):734–742. http://doi.org/10. 1002/uog.20284.
- 60. Khalil A, Archer R, Hutchinson V, et al. Noninvasive prenatal screening in twin pregnancies with cell-free DNA using the IONA test: a prospective multicenter study. *Am J Obstet Gynecol*. 2021;225(1):79. e1–79.e13. http://doi.org/10.1016/j.ajog.2021.01.005.
- 61. He Y, Wang Y, Li Z, et al. Clinical performance of non-invasive prenatal testing for trisomies 21, 18 and 13 in twin pregnancies: a

cohort study and a systematic meta-analysis. *Acta Obstet Gynecol Scand*. 2020;99(6):731–743. http://doi.org/10.1111/aogs.13842.

- Zhu X, Lam DYM, Chau MHK, et al. Clinical significance of non-invasive prenatal screening for trisomy 7: Cohort study and literature review. *Genes* (*Basel*). 2020;12(1):11. http://doi.org/10.3390/genes12010011.
- 63. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity

produces informative summary measures in diagnostic reviews. *J Clin Epidemiol.* 2005;58(10):982–990. http://doi.org/10.1016/j.jclinepi. 2005.02.022.

 Welker NC, Lee AK, Kjolby RAS, et al. High-throughput fetal fraction amplification increases analytical performance of noninvasive prenatal screening. *Genet Med.* 2021;23(3):443–450. http://doi.org/10.1038/ s41436-020-01009-5. Systematic evidence-based review: the application of noninvasive prenatal screening using cell-free DNA in general risk pregnancies

Supplement

Table of Contents

SEARCH STRATEGY FOR MEDLINE (PUBMED)
SUPPLEMENTAL FIGURE 1. PRISMA FLOWCHART OF STUDIES FOR NIPS SER
SUPPLEMENTAL TABLE 1. PICOTS AND KEY QUESTIONS FOR NIPS SER
SUPPLEMENTAL TABLE 2. INCLUSION AND EXCLUSION CRITERIA FOR NIPS SER
SUPPLEMENTAL FIGURE 2. PERFORMANCE CHARACTERISTICS OF NIPS TO DETECT TRISOMY 21 IN GENERAL-RISK POPULATIONS FROM RANDOM-EFFECTS META-ANALYSES
SUPPLEMENTAL TABLE 3. REPORTED FPR IN STUDIES NOT INCLUDED IN NIPS SER META-ANALYSIS
SUPPLEMENTAL TABLE 4. SUBGROUP ANALYSES FOR SPECIFICITY OF NIPS FOR T21
SUPPLEMENTAL TABLE 5. SUBGROUP ANALYSES FOR PPV OF NIPS FOR T21
SUPPLEMENTAL TABLE 6. SUBGROUP ANALYSES FOR FPR OF NIPS FOR T2112
SUPPLEMENTAL TABLE 7. SUBGROUP ANALYSES FOR DOR OF NIPS FOR T21
SUPPLEMENTAL TABLE 8. SUBGROUP ANALYSES FOR ACCURACY OF NIPS FOR T21
SUPPLEMENTAL FIGURE 3. PERFORMANCE CHARACTERISTICS OF NIPS TO DETECT TRISOMY 18 IN GENERAL-RISK POPULATIONS FROM RANDOM-EFFECTS META-ANALYSES
SUPPLEMENTAL TABLE 9. SUBGROUP ANALYSES FOR SPECIFICITY OF NIPS FOR T18
SUPPLEMENTAL TABLE 10. SUBGROUP ANALYSES FOR PPV OF NIPS FOR T18
SUPPLEMENTAL TABLE 11. SUBGROUP ANALYSES FOR FPR OF NIPS FOR TRISOMY 18
SUPPLEMENTAL TABLE 12. SUBGROUP ANALYSES FOR DOR OF NIPS FOR T18
SUPPLEMENTAL FIGURE 4. PERFORMANCE CHARACTERISTICS OF NIPS TO DETECT T13 IN GENERAL-RISK POPULATIONS FROM RANDOM-EFFECTS META-ANALYSES
SUPPLEMENTAL TABLE 13. SUBGROUP ANALYSES FOR SPECIFICITY OF NIPS FOR T13
SUPPLEMENTAL TABLE 14. SUBGROUP ANALYSES FOR PPV OF NIPS FOR T13
SUPPLEMENTAL FIGURE 5. DIAGNOSTIC PERFORMANCE OF NIPS FOR MULTIFETAL PREGNANCIES
SUPPLEMENTAL TABLE 16. DIAGNOSTIC PERFORMANCE OF NIPS FOR SCAS
SUPPLEMENTAL TABLE 17. SUBGROUP ANALYSES FOR SPECIFICITY OF NIPS FOR SCAS
SUPPLEMENTAL TABLE 18. SUBGROUP ANALYSES FOR PPV OF NIPS FOR SCAS
SUPPLEMENTAL TABLE 19. SUBGROUP ANALYSES FOR FPR OF NIPS FOR SCAS
SUPPLEMENTAL TABLE 20. SUBGROUP ANALYSES FOR DOR OF NIPS FOR SCAS
SUPPLEMENTAL TABLE 21. DIAGNOSTIC PERFORMANCE OF NIPS FOR RATS
NARRATIVE SUMMARY OF NIPS FOR INDIVIDUAL TRISOMIES

TRISOMY 1	32
TRISOMY 2	32
Тпізому З	33
Ткізому 4	33
Ткізому 5	34
Ткізому 6	-
Ткізому 7	34
Ткізому 8	
Ткізому 9	36
TRISOMY 10	_
TRISOMY 11	38
TRISOMY 12	38
TRISOMY 14	
TRISOMY 15	
TRISOMY 16	-
TRISOMY 17	
TRISOMY 19	
Тгізому 20	
TRISOMY 22	
Other Rare Suspected Aneuploidies	43
SUPPLEMENTAL TABLE 22. MATERNAL CONDITIONS IDENTIFIED THROUGH NIPS.	45
SUPPLEMENTAL FIGURE 6. NIPS TEST FAILURE/NO CALL RATES IN RANDOM-EFFECTS META-ANALYSIS	47
SUPPLEMENTAL TABLE 23. SUMMARY OF ALL INCLUDED STUDIES REPORTING CLINICAL OUTCOMES AND	
DIAGNOSTIC PERFORMANCE OF NIPS IN A GENERAL-RISK POPULATION.	48
SUPPLEMENTAL FIGURE 7: SUMMARY RISK OF BIAS USING QUADAS-2	144
SUPPLEMENTAL TABLE 24: SUMMARY OF ALL INCLUDED ECONOMIC ANALYSES OF NIPS	145
SUPPLEMENTAL FIGURE 8. RISK OF BIAS OF INDIVIDUAL STUDIES INCLUDED IN THE ECONOMIC ANALYSES	
SUPPLEMENTAL TABLE 25. EXCLUSION RATIONALE FOR STUDIES EXCLUDED AFTER FULL-TEXT REVIEW	159
REFERENCES	165

Search strategy for Medline (Pubmed)

Search 1:

("Noninvasive prenatal testing" AND pregnancy) AND (chromosome disorders OR aneuploidy OR trisomy 13 syndrome OR trisomy 18 syndrome OR trisomy 21 syndrome OR DNA copy number variations OR DiGeorge syndrome OR Prader-Willi syndrome OR Angelman syndrome OR Williams syndrome OR Cri-du-chat syndrome) AND (prenatal diagnosis OR amniocentesis OR chorionic villi sampling OR maternal serum screening tests OR fluorescence in situ hybridization OR karyotyping OR cytogenetics OR costs and cost analysis OR quality-adjusted life years) limit to 9/2017 to present

("Noninvasive prenatal testing" AND pregnancy) AND ((trisomies NOT trisomy 13 syndrome OR trisomy 18 syndrome OR trisomy 21 syndrome) OR (prenatal diagnosis OR psychological stress OR physiological stress OR regrets OR sensitivity and specificity OR incidental findings OR uncertainty OR neoplastic pregnancy complications) OR (chromosome aberrations AND mothers))

Search 2:

(((("Noninvasive prenatal testing" OR ("cell free nucleic acids/analysis"[MeSH Terms] OR "cellfree DNA" OR "cfDNA")) AND pregnancy) AND (chromosome disorders OR aneuploidy OR trisomy 13 syndrome OR trisomy 18 syndrome OR trisomy 21 syndrome OR DNA copy number variations OR DiGeorge syndrome OR Prader-Willi syndrome OR Angelman syndrome OR Williams syndrome OR Cri-du-chat syndrome) AND (prenatal diagnosis OR amniocentesis OR chorionic villi sampling OR maternal serum screening tests OR fluorescence in situ hybridization OR karyotyping OR cytogenetics OR costs and cost analysis OR quality-adjusted life years)) NOT (("Noninvasive prenatal testing" AND pregnancy) AND (chromosome disorders OR aneuploidy OR trisomy 13 syndrome OR trisomy 18 syndrome OR trisomy 21 syndrome OR DNA copy number variations OR DiGeorge syndrome OR Prader-Willi syndrome OR Angelman syndrome OR Williams syndrome OR Cri-du-chat syndrome) AND (prenatal diagnosis OR amniocentesis OR chorionic villi sampling OR maternal serum screening tests OR fluorescence in situ hybridization OR karyotyping OR cytogenetics OR costs and cost analysis OR quality-adjusted life years)) NOT (("Noninvasive prenatal testing" AND pregnancy) AND (prenatal diagnosis OR amniocentesis OR chorionic villi sampling OR maternal serum screening tests OR fluorescence in situ hybridization OR karyotyping OR cytogenetics OR costs and cost analysis OR quality-adjusted life years))) AND (("2017/09/01"[Date - Publication] : "3000"[Date - Publication])) Sort by: Most Recent

Supplemental Figure 1. PRISMA flowchart of studies for NIPS SER.

Supplemental Table 1. PICOTS and Key Questions for NIPS SER.

PICOTS	Key Questions
Population: pregnant individuals at general	KQ1: In a general risk population, does non-
risk for fetal aneuploidy (singleton and	invasive prenatal screening (NIPS) for T21
multiple gestations)	offer superior screening performance when
	compared to traditional methods of
	screening?
Intervention: NIPS	KQ2: In a general risk population, does NIPS
	for T18 or T13 offer superior screening
	performance compared to traditional
	methods of screening?
Comparators: traditional screening (e.g.,	KQ3: In a general risk population of multifetal
serum screening, ultrasound, QUAD screen)	gestations, does NIPS for T21, T18, and T13
	offer superior screening performance
	compared to traditional methods of
	aneuploidy screening?
Outcomes: detection of T21, T18, T13, RATs,	KQ4: In a general risk population, what is the
SCAs, CNVs (microdeletions), maternal	evidence that supports the routine use of
conditions; change in uptake of invasive	screening for fetal SCAs with NIPS?
diagnostic tests; cost-effectiveness, ^a cost-	
utility ^a	KOE, In a general rick pepulation what is the
Timing of NIPS: unspecified	KQ5: In a general risk population, what is the
	evidence for routine use of screening for fetal CNVs (e.g., microdeletions) with NIPS?
Setting: none specified (e.g., clinic,	KQ6: In a general risk population, what is the
laboratory)	evidence for routine use of screening for
	fetal RATs with NIPS?
	KQ7: In a general risk population, does the
	use of NIPS result in different uptake of
	diagnostic testing (CVS, amniocentesis) or
	laboratory assays (FISH, array, molecular)
	compared to the use of traditional screening?
	KQ8: Does the use of NIPS lead to different
	levels of patient anxiety/stress/regret than
	what occurs with traditional screening?
	(include inconclusive/non-reportable results
	here)
	KQ9: Does the use of NIPS result in
	identification of unknown maternal

	conditions more frequently than with the use of traditional screening methods?			
KQ10: What are the economic implications				
	using NIPS as first-line screening for fetal			
aneuploidy compared to using traditional				
	screening methods?			
CNVs, copy number variants; KQ, key question; NIPS, noninvasive prenatal screening; QUAD,				
quad screening; RATs, rare autosomal trisomies; SCAs, sex chromosome aneuploidies; SER,				
systematic evidence review; T21, trisomy 21; T18, trisomy 18; T13, trisomy 13.				

Supplemental Table 2. Inclusion and exclusion criteria for NIPS SER.

Inclusion	Exclusion			
General-risk pregnant individuals	High-risk population exclusively (mixed-risk			
	patients may be included)			
NIPS used as primary or secondary screening	Not primary literature (review articles,			
for T21, T18, T13, SCAs, RATs, CNVs, maternal	abstracts, editorials, guidelines, SERs or			
conditions	meta-analyses (used to identify relevant			
	primary literature))			
Studies reporting diagnostic performance of	NIPS method development			
NIPS (i.e., sensitivity, specificity, PPV, NPV,				
FPR, DOR, accuracy)				
Studies reporting psychosocial outcomes	Non-English language			
pertaining to use of NIPS in a general-risk				
population				
Studies reporting uptake of invasive				
diagnostic testing subsequent to NIPS				
Studies reporting economic implications of	No economic outcomes reported			
NIPS (Cost-utilities, cost-effectiveness, costs				
associated with NIPS, QALYs, ICERs) in a				
general-risk population				
	Publication date prior to September 1, 2017			
	for KQ1, KQ2, KQ3, KQ4, KQ5, KQ7, KQ10			
CNVs, copy number variants; DOR, diagnostic c	• • • •			
incremental cost effectiveness ratios; KQ, key question; NIPS, noninvasive prenatal screening;				
NPV, negative predictive value; PPV, positive predictive value; QALY, quality-adjusted life				
year; RATs, rare autosomal trisomies; SCAs, sex chromosome aneuploidies; SER, systematic				
evidence review; T21, trisomy 21; T18, trisomy 18; T13, trisomy 13.				

Supplemental Figure 2. Performance characteristics of NIPS to detect Trisomy 21 in general-risk populations from random-effects metaanalyses.

A) sensitivity; B) specificity; C) false positive rate; D) positive predictive value; E) negative predictive value; F) diagnostic odds ratio

Supplemental Table 3. Reported FPR in studies not included in NIPS SER meta-analysis.

Study	Reported False Positive Rate
Basaran et al., 2020	8.20%
Costa et al., 2018	0% (95% CI 0%-0.47%)
Kagan et al., 2018	0%
Lai et al., 2021	0.05%
Petersen et al., 2017	15%
Sanchez-Duran et al., 2019	0%
Tekesin et al., 2021	5.0% (95% CI 0.1-16.9%)

Supplemental Table 4. Subgroup analyses for specificity of NIPS for T21.

	Ν			Between-group
Category	studies	Specificity (%) (95% CI)	²	difference
Year of publication				
2017	1	100 (0-100)	NA	
2018	1	99.96 (99.93-99.98)	NA	Q =1.45
2019	5	99.94 (99.89-99.99)	87.5%	
2020	5	99.96 (99.84-99.99)	74.7%	<i>P</i> = 0.84
2021	2	99.97 (99.93-99.99)	0%	
Country				
China	8	99.96 (99.93-99.98)	77.4%	
Canada	3	99.97 (99.02-100)	0%	<i>Q</i> = 19.12
Germany	1	99.73 (99.43-99.87)	NA	
Iran	1	99.96 (99.90-99.99)	NA	P = 0.0007
Saudi Arabia	1	100 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	13	99.95 (99.92-99.96)	77.7%	<i>Q</i> = 0.00
Serious	1	100 (0-100)	NA	P = 1.00
Population size				
<10,000	5	99.90 (99.85-99.93)	0%	Q = 5.56
≥10,000	9	99.96 (99.92-99.98)	80.1%	P = 0.0184
Table legend: NA, not	applicable	; NIPS, non-invasive prenatal scr	eening	

	Ν			Between-group
Category	studies	PPV (%) (95% CI)	²	difference
Year of publication				
2017	2	85.40 (80.71-89.11)	0%	
2018	1	92.00 (85.77-95.64)	NA	<i>Q</i> =18.20
2019	9	89.21 (82.45-93.57)	82.5%	
2020	9	94.09 (88.20-97.14)	35.3%	P = 0.0027
2021	6	94.02 (87.81-97.16)	59.4%	
Country				
China	12	89.51 (84.79-92.88)	68.4%	
Canada	3	93.01 (21.10-99.85)	0%	
United States	3	80.98 (49.40-94.89)	83.8%	
Germany	2	93.38 (87.77-96.52)	0%	
Saudi Arabia	1	100 (0-100)	NA	Q = 17.61
Spain	1	100 (0-100)	NA	Q = 17.01
The Netherlands	1	95.96 (92.43-97.89)	NA	<i>P</i> = 0.09
Turkey	1	91.84 (80.18-96.90)	NA	F = 0.09
Iran	1	95.74 (89.21-98.39)	NA	
Thailand	1	94.00 (82.98-98.05)	NA	
Lithuania	1	100 (0-100)	NA	
United Kingdom	1	98.86 (95.55-99.71)	NA	
Risk of bias (ROBINS-I)			
Moderate	20	90.42 (87.22-92.88)	67.7%	<i>Q</i> = 0.73
Serious	8	94.53 (81.73-98.53)	73.5%	<i>P</i> = 0.39
Population size				
<10,000	13	92.94 (86.25-96.51)	52.1%	<i>Q</i> = 0.28
≥10,000	15	91.27 (87.18-94.14)	74.8%	<i>P</i> = 0.60

Supplemental Table 5. Subgroup analyses for PPV of NIPS for T21.

	N			Between-group
Category	studies	FPR (%) (95% CI)	²	difference
Year of publication				
2017	1	0.00 (0-1.00)	NA	
2018	1	0.04 (0.02-0.07)	NA	<i>Q</i> =1.45
2019	5	0.06 (0.03-0.11)	87.5%	
2020	5	0.04 (0.01-0.16)	74.7%	<i>P</i> = 0.84
2021	2	0.03 (0.01-0.07)	0%	
Country				
China	8	0.04 (0.02-0.07)	77.4%	
Canada	3	0.03 (0-0.98)	0%	<i>Q</i> = 19.12
Germany	1	0.27 (0.13-0.57)	NA	
Saudi Arabia	1	0 (0-1.00)	NA	P = 0.0007
Iran	1	0.04 (0.01-0.10)	NA	
Risk of bias (ROBINS-I)			
Moderate	13	0.05 (0.04-0.08)	77.7%	<i>Q</i> = 0.00
Serious	1	0 (0-1.00)	NA	P = 1.00
Population size				
<10,000	4	0.03 (0-0.98)	0%	<i>Q</i> = 0.04
≥10,000	10	0.04 (0.02-0.08)	81.8%	<i>P</i> = 0.83
Table legend FPR, fals	se positive	rate; NA, not applicable		

Supplemental Table 6. Subgroup analyses for FPR of NIPS for T21.

	Ν			Between-group
Category	studies	DOR (95% CI)	²	difference
Year of publicatio	n			
2017	1	30,000 (550; 1,600,000)	NA	
2018	1	99,000 (27,000-367,000)	NA	<i>Q</i> = 0.85
2019	5	130,000 (23,000-700,000)	54.4%	
2020	5	140,000 (27,000-740,000)	68.6%	<i>P</i> = 0.93
2021	2	42,000 (1,600-110,000)	45.0%	
Country				
China	8	203,000 (64,000-650,000)	66.8%	
Canada	3	14,000 (1,700-110,000)	0%	<i>Q</i> = 8.58
Germany	1	33,000 (4,000-270,000)	NA	
Saudi Arabia	1	5,800 (100-313,000)	NA	<i>P</i> = 0.07
Iran	1	250,000 (28,000-230,000)	NA	
Risk of bias (ROBI	NS-I)			
Moderate	13	89,000 (38,000-210,000)	50.0%	Q = 5.02
Serious	1	4,000,000 (160,000-98,000,000)	NA	<i>P</i> = 0.025
Population size				
<10,000	4	11,000 (1,800-72,000)	0%	Q = 6.39
≥10,000	10	170,000 (63,000-450,000)	74.8%	P = 0.0115
Table legend DO	R, diagnosti	c odds ratio; NA, not applicable		

Supplemental Table 7. Subgroup analyses for DOR of NIPS for T21.

	Ν			Between-group
Category	studies	Accuracy (95% CI)	²	difference
Year of publication				
2017	1	99.96 (99.32-100)	NA	
2018	1	99.95 (99.91-99.97)	NA	<i>Q</i> = 0.49
2019	5	99.93 (99.86-99.97)	86.3%	
2020	5	99.94 (99.86-99.97)	85.9%	<i>P</i> = 0.97
2021	2	99.94 (99.61-99.99)	52.8%	
Country				
China	8	99.95 (99.93-99.97)	81.8%	
Canada	3	99.88 (99.66-99.96)	3.4%	<i>Q</i> = 22.30
Germany	1	99.70 (99.40-99.85)	NA	
Saudi Arabia	1	99.75 (96.15-99.98)	NA	P = 0.0002
Iran	1	99.96 (99.89-99.98)	NA	
Risk of bias (ROBINS-I)			
Moderate	13	99.93 (99.90-99.95)	78.8%	Q = 8.98
Serious	1	100 (99.98-100)	NA	P = 0.0027
Population size				
<10,000	4	99.86 (99.66-99.95)	0%	<i>Q</i> = 2.86
≥10,000	10	99.94 (99.91-99.96)	85.1%	<i>P</i> = 0.09
Table legend NA, not	applicable			

Supplemental Table 8. Subgroup analyses for accuracy of NIPS for T21.

Supplemental Figure 3. Performance characteristics of NIPS to detect Trisomy 18 in general-risk populations from random-effects metaanalyses.

A) sensitivity; B) specificity; C) false positive rate; D) positive predictive value; E) negative predictive value; F) diagnostic odds ratio

Supplemental Table 9. Subgroup analyses for specificity of NIPS for T18.

	Ν			Between-group
Category	studies	Specificity (%) (95% CI)	²	difference
Year of publication				
2019	3	99.98 (99.97-99.98)	0%	<i>Q</i> = 19.70
2020	3	99.87 (99.66-99.95)	95.2%	
2021	1	99.49 (96.47-99.93)	NA	P < 0.0001
Country				
China	3	99.97 (99.95-99.98)	73.3%	
Spain	1	100 (0-100)	NA	<i>Q</i> = 64.64
Germany	1	99.84 (99.57-99.94)	NA	
Iran	1	99.68 (99.56-99.77)	NA	<i>P</i> < 0.0001
Saudi Arabia	1	99.49 (96.47-99.93)	NA	
Risk of bias (ROBINS-I)			
Moderate	6	99.93 (99.81-99.97)	95.7%	<i>Q</i> = 0.00
Serious	1	100 (0-100)	NA	P = 1.00
Population size				
<10,000	2	99.85 (98.94-99.98)	0%	<i>Q</i> = 0.60
≥10,000	5	99.94 (99.83-99.98)	96.5%	<i>P</i> = 0.44
Table legend: NA, not	applicable	e; NIPS, non-invasive prenatal scr	eening	

	Ν			Between-group
Category	studies	PPV (%) (95% CI)	²	difference
Year of publication				
2016	1	0 (0-100)	NA	
2017	1	77.36 (68.43-84.34)	NA	<i>Q</i> = 3.45
2019	4	81.93 (66.09-91.34)	82.5%	
2020	8	68.14 (32.20-90.59)	77.2%	<i>P</i> = 0.49
2021	3	62.96 (43.77-78.78)	0%	
Country				
China	8	60.30 (46.14-72.92)	82.4%	
United States	3	42.45 (1.39-97.47)	85.4%	0
Lithuania	1	100 (0-100)	NA	<i>Q</i> = 25.03
Germany	1	74.84 (53.34-88.56)	NA	D 0.0000
Iran	1	7.69 (2.50-21.30)	NA	P = 0.0003
Saudi Arabia	1	80.00 (30.90-97.28)	NA	
Thailand	1	100 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	13	67.74 (46.91-83.31)	82.5%	<i>Q</i> = 0.27
Serious	4	50.82 (7.56-92.88)	84.7%	<i>P</i> = 0.60
Population size				
<10,000	7	77.07 (47.02-92.72)	77.7%	<i>Q</i> = 1.14
≥10,000	10	56.75 (30.39-79.77)	90.6%	<i>P</i> = 0.29
Full reporting of data				
Yes	5	60.37 (27.58-85.91)	90.6%	<i>Q</i> = 0.14
No	1	68.12 (42.43-86.10)	88.3%	P = 0.70
	applicable	; NIPS, non-invasive prenatal sc		
predictive value		, , , , , , , , , , , , , , , , , , , ,	, .	,,

Supplemental Table 10. Subgroup analyses for PPV of NIPS for T18.

Supplemental Table 11. Subgroup analyses for FPR of NIPS for Trisomy 18.

	N			Between-group
Category	studies	FPR (%) (95% CI)	²	difference
Year of publication				
2019	3	0.02 (0.02-0.03)	0%	0 - 10 70
2020	3	0.13 (0.05-0.34)	95.2%	Q = 19.70 P < 0.0001
2021	1	0.51 (0.07-3.53)	NA	P < 0.0001
Country	1			
China	3	0.03 (0.02-0.05)	73.3%	<i>Q</i> = 64.64
Germany	1	0.16 (0.06-0.43)	NA	Q = 04.04
Iran	1	0.32 (0.23-0.44)	NA	<i>P</i> < 0.0001
Saudi Arabia	1	0.51 (0.07-3.53)	NA	<i>P</i> < 0.0001
Risk of bias (ROBINS-I)			
Moderate	6	0.07 (0.03-0.19)	95.7%	Q = 0.00
Serious	1	0 (0-100)	NA	<i>P</i> = 1.00
Desculation size				
Population size	-			
<10,000	2	0.15 (0.02-01.06)	96.5%	<i>Q</i> = 0.60
≥10,000	5	0.06 (0.02-0.17)	96.5%	<i>P</i> = 0.44
Full reporting of data				
Yes	6	0.06 (0.02-0.17)	95.7%	0 - 1 95
				Q = 1.85
No	1	68.12 (42.43-86.10)	88.3%	<i>P</i> = 0.17
-	se positive	e rate; NA, not applicable; NIPS, i	non-invasive	e prenatal
screening				

	Ν			Between-group
Category	studies	DOR (95% CI)	²	difference
Year of publication				
2019	2	200,000 (53,000-730,000)	0%	Q = Q C Q
2020	3	17,000 (1,900-160,000)	41.7%	Q = 9.69 P = 0.0079
2021	1	1,200 (42-33,000)	NA	P = 0.0079
Country				
China	3	180,000 (54,000-580,000)	0%	0 40 70
Germany	1	22,000 (1100-420,000)	NA	Q = 13.73
Iran	1	2100 (110-42,000)	NA	<i>P</i> = 0.0033
Saudi Arabia	1	1,200 (42-33,000)	NA	P = 0.0035
Population size				
<10,000	1	1,200 (42-33,000)	NA	<i>Q</i> = 4.05
≥10,000	5	53,000 (10,000-270,000)	52.1%	<i>P</i> = 0.04
Full reporting of data				
Yes	5	30,000 (3,500-250,000)	70.4%	<i>Q</i> = 0.03
No	1	22,000 (1,100-420,000)	NA	<i>P</i> = 0.87
Table legend: DOR, di screening	agnostic o	dds ratio; NA, not applicable; NIP	S, non-inva	asive prenatal

Supplemental Table 12. Subgroup analyses for DOR of NIPS for T18.

Supplemental Figure 4. Performance characteristics of NIPS to detect T13 in general-risk populations from random-effects meta-analyses.

A) sensitivity; B) specificity; C) false positive rate; D) positive predictive value; E) negative predictive value; F) diagnostic odds ratio

Supplemental Table 13. Subgroup analyses for specificity of NIPS for T13.

_	N			Between-group
Category	studies	Specificity (%) (95% Cl)	²	difference
Year of publication				
2019	4	99.97 (99.94-99.98)	81.7%	0 - 0 22
2020	3	99.95 (99.79-99.99)	87.2%	Q = 0.33 P = 0.85
2021	1	100 (0-100)	NA	P = 0.85
Country				
China	4	99.97 (99.94-99.98)	79.4%	
Germany	1	99.76 (99.47-99.89)	NA	Q = 21.74
Iran	1	99.99 (99.94-100)	NA	
Spain	1	99.79 (98.50-99.97)	NA	P = 0.0002
Saudi Arabia	1	100 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	6	99.97 (99.92-99.99)	84.5%	<i>Q</i> = 1.46
Serious	2	99.94 (99.91-99.96)	36.9%	<i>P</i> = 0.23
Population size				
<10,000	2	99.85 (98.95-99.98)	0%	<i>Q</i> = 1.68
≥10,000	6	99.96 (99.92-99.98)	85.9%	<i>P</i> = 0.20
Table legend: NA, not	applicable	; NIPS, non-invasive prenatal scr	reening	

	Ν			Between-group
Category	studies	PPV (%) (95% CI)	²	difference
Year of publication				
2017	1	44.74 (34.00-55.99)	NA	
2019	6	31.83 (13.90-57.46)	82.9%	<i>Q</i> = 1.03
2020	7	41.49 (21.99-64.07)	66.3%	<i>P</i> = 0.79
2021	3	36.36 (14.33-66.12)	0%	
Country				
China	9	24.53 (14.80-37.80)	50.4%	
Germany	2	50.00 (30.24-69.76)	44.0%	
United States	2	57.05 (40.54-72.12)	89.9%	Q = 15.48
Iran	1	87.50 (46.27-98.27)	NA	
Spain	1	0 (0-100)	NA	P = 0.0169
Thailand	1	58.33 (30.76-81.52)	NA	
Saudi Arabia	1	100 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	12	39.06 (24.79-55.47)	49.4%	<i>Q</i> = 0.03
Serious	5	36.71 (17.28-61.69)	85.0%	<i>P</i> = 0.87
Population size				
<10,000	8	32.15 (17.69-51.09)	15.7%	<i>Q</i> = 0.76
≥10,000	9	43.32 (26.90-61.36)	80.9%	<i>P</i> = 0.38
Table legend: NA, notpredictive value	applicable	e; NIPS, non-invasive prenatal sc	reening; PP	V, positive

Supplemental Table 14. Subgroup analyses for PPV of NIPS for T13.

	Ν			Between-group
Category	studies	FPR (%) (95% CI)	²	difference
Year of publication				
2019	4	0.03 (0.02-0.06)	81.7%	0 -0 22
2020	3	0.05 (0.01-0.21)	87.2%	Q =0.33 P = 0.85
2021	1	0 (0-100)	NA	P - 0.85
Country				
China	4	0.03 (0.02-0.06)	79.4%	
Germany	1	0.21 (0.03-1.50)	NA	Q = 21.73
Iran	1	0.01 (0-0.06)	NA	
Spain	1	0.21 (0.03-1.50)	NA	P = 0.0002
Saudi Arabia	1	0 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	6	0.03 (0.01-0.08)	84.5%	<i>Q</i> = 1.46
Serious	2	0.06 (0.04-0.09)	36.9%	<i>P</i> = 0.23
Population size				
<10,000	2	0.15 (0.02-1.05)	0%	<i>Q</i> = 1.68
≥10,000	6	0.04 (0.02-0.08)	85.9%	<i>P</i> = 0.20
Table legend: FPR, fal screening	se positive	rate; NA, not applicable; NIPS,	non-invasive	e prenatal

Supplemental Table 15. Subgroup analyses for FPR of NIPS for T13.
Supplemental Figure 5. Diagnostic performance of NIPS for multifetal pregnancies.

A) sensitivity; B) specificity; C) positive predictive value; D) negative predictive value; E) diagnostic odds ratio; F) false positive rate

	# of		
Test Statistic	Studies	Result (%) (95% CI)	²
Overall SCAs			
Sensitivity	11	99.63 (94.83-99.98)	0%
Specificity	9	99.80 (99.69-99.88)	87.6%
PPV	29 [†]	43.13 (37.92-48.50)	71.0%
NPV	9	100 (99.99-100)	0%
FPR	9	0.20 (0.12-0.31)	87.6%
Accuracy	9	99.78 (99.71-99.83)	89.3%
DOR*	9	12688.01 (3059.76-52613.82)	75.2%
Monosomy X/Tu	rnar syndrom	20	
Sensitivity	7	97.68 (84.25-99.70)	0%
Specificity	6	99.84 (99.67-99.92)	88.7%
PPV	23 [†]		70.1%
NPV	6	29.52 (22.72-37.36) 100 (99.98-100)	0%
		, ,	-
FPR	6	0.16 (0.08-0.33)	88.7%
Accuracy	6	99.82 (99.71-99.89)	88.4%
DOR*	6	8451.3850 (1809.46-39473.51)	42.7%
Trisomy X (XXX)		1	1
Sensitivity	5	100 (0-100)	0%
Specificity	4	99.97 (99.96-99.98)	0%
PPV	16^+	53.95 (40.58-66.77)	68.4%
NPV	4	100 (0-100)	0%
FPR	4	0.03 (0.02-0.04)	0%
Accuracy	4	99.97 (99.96-99.98)	0%
DOR*	4	122075.54 (27498.37-541938.91)	0%
Klinefelter syndro	ome (XXY)		
Sensitivity	4	99.25 (78.13-99.98)	0%
Specificity	4	99.99 (99.98-99.99)	0%
PPV	 17 ⁺	74.05 (59.47-84.73)	75.5%
NPV	4	100 (99.98-100)	0%
FPR	4	0.01 (0.02-0.02)	0%
Accuracy	4 4	99.98 (99.98-99.99) 0%	
DOR*	4	131772.21 (32519.67-533951.24)	0%
DOR	4	131//2.21 (32313.07-33331.24)	070
Jacob's syndrome	e (XYY)		
Sensitivity	4	100 (0-100)	0%

Supplemental Table 16. Diagnostic performance of NIPS for SCAs.

	# of				
Test Statistic	Studies	Result (%) (95% Cl)	²		
Specificity	4	99.99 (99.99-100)	0%		
PPV	14 ⁺	4 ⁺ 74.45 (58.40-85.81)			
NPV	4	100 (0-100)	0%		
FPR	4	0.01 (0-0.01)	0%		
Accuracy	4	99.99 (99.99-100)	0%		
DOR* 4 202461.83 (38930.01-1052935.65) 0%					
*Data presented	as odds ratio)			
+Rousseau et al.,	, 2019 data re	eported separately for Illumina and Th	iermo-		
Fisher.					
[@] Results do not	include studie	es without adequate data to include in	ו meta-		
analyses.					
Table legend: DOR, diagnostic odds ratio; FPR, false positive rate; NIPS,					
non-invasive prenatal screening; NPV, negative predictive value; NR, not					
reported; PPV, p	ositive predic	tive value; SCA, sex chromosome			
aneuploidies					

Supplemental Table 17. Subgroup analyses for specificity of NIPS for SCAs.

	Ν			Between-group	
Category	studies	Specificity (%) (95% CI)	²	difference	
Year of publication					
2019*	5	99.80 (99.57-99.91)	86.6%	0 -0 79	
2020	2	99.85 (99.61-99.94)	92.6%	Q =0.78 P = 0.68	
2021	2	99.77 (99.66-99.84)	94.1%	P = 0.68	
Country					
China	5	99.78 (99.72-99.83)	87.2%	0 - 20 50	
Canada*	2	99.46 (99.13-99.66)	33.1%	<i>Q</i> = 30.50	
Iran	1	99.93 (99.86-99.96)	NA	<i>P</i> < 0.0001	
Cyprus	1	99.95 (99.85-99.98)	NA	P < 0.0001	
Population size					
<10,000*	2	99.46 (99.13-99.66)	33.1%	Q = 13.73	
≥10,000	7	99.84 (99.75-99.89)	88.2%	<i>P</i> = 0.0002	
*Rousseau listed twic	e for the d	ifferent platforms.			
Table legend: NA, not	applicable	e; NIPS, non-invasive prenatal scr	eening; SCA	A, sex	
chromosome aneuplo	idies				

	Ν			Between-group
Category	studies	PPV (%) (95% CI)	²	difference
Year of publication				
2015	1	21.31 (12.80-33.33)	NA	
2017	1	40.32 (32.06-49.17)	NA	
2018	2	41.14 (34.09-48.58)	54.7%	<i>Q</i> =10.84
2019	7	42.16 (26.86-59.12)	74.3%	<i>P</i> = 0.05
2020	13	47.67 (37.42-58.12)	74.9%	
2021	5	41.78 (37.46-46.24)	46.3%	
Country				
China	16	41.21 (37.83-44.68)	79.4%	
Canada	2*	10.53 (2.65-33.74)	NA	
United States	2	31.16 (19.30-46.15)	84.3%	
Turkey	1	50.00 (28.42-71.58)	NA	
Belgium	1	37.29 (29.05-46.34)	NA	<i>Q</i> = 50.04
Iran	1	72.41 (53.76-85.56)	NA	
Cyprus	1	78.57 (50.57-92.93)	NA	<i>P</i> < 0.0001
Italy	1	77.27 (55.64-90.21)	NA	
Thailand	1	68.18 (46.63-84.01)	NA	
Australia	1	26.04 (18.25-35.71)	NA	
Lithuania	1	100 (0-100)	NA	
Risk of bias (ROBINS-I)			
Moderate	21	45.02 (37.98-52.27)	74.7%	<i>Q</i> = 1.87
Serious	8	38.80 (33.66-44.21)	56.8%	<i>P</i> = 0.17
Population size				
<10,000	10	47.95 (34.46-61.76)	66.4%	<i>Q</i> = 0.78
≥10,000	19	41.26 (36.17-46.54)	74.0%	<i>P</i> = 0.38
Table legend: NA, not	applicable	; NIPS, non-invasive prenatal sc	reening; PP	V, positive
predictive value; SCA,	• •	•	-	-

Supplemental Table 18. Subgroup analyses for PPV of NIPS for SCAs.

	N			Between-group	
Category	studies	FPR (%) (95% CI)	²	difference	
Year of publication					
2019	5	0.20 (0.09-0.43)	86.6%	0 -0 79	
2020	2	0.15 (0.06-0.39)	92.6%	Q =0.78 P = 0.68	
2021	2	0.23 (0.16-0.34)	94.1%	P = 0.08	
Country					
China	5	0.22 (0.17-0.28)	87.2%	<i>Q</i> = 30.50	
Canada	2	0.54 (0.34-0.87)	33.1%	Q - 50.50	
Iran	1	0.07 (0.04-0.14)	NA	<i>P</i> <= 0.0001	
Cyprus	1	0.05 (0.02-0.15)	NA	P <= 0.0001	
Population size					
<10,000	2	0.54 (0.34-0.87)	33.1%	<i>Q</i> = 13.73	
≥10,000	7	0.16 (0.11-0.25)	88.2%	P = 0.0002	
Table legend: FPR, fal	se positive	rate; NA, not applicable; NIPS,	non-invasive	e prenatal	
screening; SCA, sex ch	nromosom	e aneuploidies			

Supplemental Table 19. Subgroup analyses for FPR of NIPS for SCAs.

	Ν			Between-group	
Category	studies	DOR (95% CI)	²	difference	
Year of publication					
2019	5	9,900 (1,200-83,000)	64.6%	$\Omega = 0.90$	
2020	2	32,000 (5,800-170,000)	0%	Q = 0.80	
2021	2	11,000 (270-440,000)	85.7%	<i>P</i> = 0.67	
Country					
China	5	24,000 (3,100-190,000)	82.6%	0 0 50	
Canada	2*	540 (54-5,500)	0%	Q = 8.59	
Iran	1	29,000 (3,500-240,000)	NA	<i>P</i> = 0.0352	
Cyprus	1	41,000 (2,000-830,000) N		P = 0.0552	
Population size					
<10,000	2	540 (54-5,500)	66.4%	<i>Q</i> = 7.10	
≥10,000 7 26,000 (4,900-140,000) 79.9% P = 0.0077					
Table legend: DOR, di	iagnostic o	dds ratio; NA, not applicable; NIP	S, non-inva	asive prenatal	
screening; SCA, sex ch	nromosom	e aneuploidies			

Supplemental Table 20. Subgroup analyses for DOR of NIPS for SCAs.

Test Statistic	# of Studies	Result (%) (95% CI)			
Sensitivity	2	92.31 (60.94-98.93)	0%		
Specificity	3	99.95 (99.93-99.96)	46.9%		
PPV	17	13.42 (8.07-21.48)	70.3%		
NPV	3	100 (99.99-100)	0%		
FPR	3	0.05 (0.04-0.07)	46.9%		
Accuracy	3	99.95 (99.93-99.96) 42.19			
DOR*	2	16,000 (2,900-90,000); <i>P</i> < 0.0001	0%		
*Data presented as odds ratio					
Results do not inc	lude studies wit	hout adequate data to include in meta-analyses.			

Supplemental Table 21. Diagnostic performance of NIPS for RATs.

Page | **31**

Narrative Summary of NIPS for Individual Trisomies

Trisomy 1

A single suspected case of T1 was reported from a very large (N=86,193) study from China. Following SNP-microarray testing which revealed arr(1-22)x2,(XN)x1, the case was categorized as a false positive and the follow-up from the patient was reported as a normal live birth[1].

Trisomy 2

Five cases of suspected T2 were identified in a large (N=89,817) study from the United States. Three of these were found to be mosaic and two of these were cases of UPD. Both UPD/TFM pregnancies were terminated, while the third TFM pregnancy resulted in a live birth with intrauterine growth restriction (IUGR), but no dysmorphology at birth. Two cases were found to be confined placental mosaicism (CPM). One of these resulted in a live normal birth while the other ended in fetal demise at 17 weeks with severe IUGR, anhydramnios, and multiple congenital anomalies[2]. Liang et al. report a NIPS+ for T2 in a fetus found to have oligohydramnios and a single umbilical artery; the pregnancy was terminated[3]. Confined placental mosaicism was identified in the single case of T2 NIPS+ identified in a large prospectively reported study from a single laboratory. The outcome was a live birth with fetal growth restriction[4]. Two cases, both high-risk, received NIPS+ results for T2 in a large mixedrisk study reported by Wan et al. (2018). One patient reported normal follow-up while the other identified arr2p25.3p11.2x2 hmz (87 Mb) and arr2q11.1q37.3x2 hmz (147.22 Mb), both categorized as uncertain significance, by CMA[5]. Two suspected T2 cases, one of which was considered high-risk from serum screening, were identified in a study of 18,016 mixed-risk patients from a single center in China. Confirmatory testing revealed arr 2p25.1p22.3x2 hmz (24.36 Mb) in one case and arr 15q14q23x2 hmz (31.20 Mb), both of uncertain pathogenicity. Pregnancy outcomes were fetal loss and vaginal bleeding in the first case and a normal liveborn in the second[6]. A large (N=34,620) general population study from China identified a single suspected case of T2 using NIPS which was confirmed through additional testing[7].

Study	Trisomy 2 TP	Trisomy 2 FP	Unverified/Missing	ТОР
Pertile 2017	3 (TFM x3)^	2 (CPM)		2^
Liang 2018				1
Scott 2018	1-mosaic			
Wan 2018	2-VUS			
Gou 2020		2		
Chen 2021	1			
Van Den	1			
Bogaert 2021				

A patient who received a T3 NIPS+ had no confirmatory genetic testing but had a live birth[4]. Four patients (one low-risk) received T3 NIPS+ results. Two patients reported normal follow-up without additional testing, one patient underwent karyotyping that did not confirm the T3 NIPS result, and one patient underwent CMA which identified two benign chromosome 4 and chromosome 14 anomalies but did not confirm the T3 finding[5]. Both T3 NIPS+ results were confirmed to be false positives in the study by Chen et al. (2019)[8]. The Dutch TRIDENT-2 study evaluating the national implementation of NIPS as a first-tier screening test identified 3 suspected T3 cases, none of which were confirmed[9]. A single suspected case of T3 was found to be false positive with a pregnancy outcome of a normal liveborn in a patient with intermediate risk from serum screening[6]. Among the five suspected T3 cases identified by Chen et al. (2021), three were confirmed to be false positives by additional testing and two were unverified[7]. The single T3 NIPS+ result was similarly found to be a false positive in the study by Lai et al. (2021) and follow-up was reported as a live birth and normal[1]. Neither T3 NIPS finding was verified in the study by Pertile et al. (2017)[2].

Study	Trisomy 3 TP	Trisomy 3 FP	Unverified/Missing	ТОР
Pertile 2017			2	
Scott 2018			1	
Wan 2018		2	2	
Chen 2019		2		
Van der Meij 2019		3		
Gou 2020		1		
Chen 2021		3	2	
Lai 2021		1		

Trisomy 4

In a large study (N=89,817) from the United States, three cases of T4 were confirmed. Two cases were uniparental disomy and the third had intrauterine fetal demise[2]. Three patients from a single laboratory were reported to have T4 NIPS+. No abnormality was detected in confirmatory genetic testing and all three were live births; however, two of the three had fetal growth restriction[4]. Chen et al. (2019) reported one T4 NIPS+ result which was unverified in their study[8]. The single suspected case of T4 in the TRIDENT-2 study was found to be a false positive[9]. Two suspected cases of T4 were identified from 34,620 general risk pregnant individuals. One of these was confirmed to be a false positive after additional testing, while one remained unverified[7].

Study	Trisomy 4 TP	Trisomy 4 FP	Unverified/Missing	ТОР
Pertile 2017	3 (2 UPD, 1 IUFD)			
Scott 2018			3	

Chen 2019		1	
Van der Meij 2019	1		
Chen 2021	1	1	

Fetal growth restriction, ultrasound-identified fetal structural abnormality and postnatal anomalies were observed in the single patient who received a T5 NIPS+, despite genetic testing which did not detect any abnormalities[4]. Two high-risk patients from a mixed-risk population reported normal clinical outcomes after receiving a T5 NIPS+ result but did not undergo additional testing[5]. The single T5 NIPS+ result reported by Chen and colleagues was confirmed to be a true positive[8]. Two cases of suspected T5 were observed in the TRIDENT-2 study; however, both were later confirmed to be false positives[9]. In a large study of 34,620 women in China, Chen et al. (2021) identified 3 cases of suspected T5. Two of these were found to be false positives and one remained unverified[7].

Study	Trisomy 5 TP	Trisomy 5 FP	Unverified/Missing	ТОР
Pertile 2017			1	
Scott 2018		1		
Wan 2018			2	
Chen 2019	1			
Van der Meij 2019		2		
Chen 2021		2	1	

Trisomy 6

A single suspected case of T6 was found to be false positive with a pregnancy outcome of a normal liveborn in a patient with intermediate risk from serum screening[6].

Trisomy 7

Thirteen studies reported positive NIPS for Trisomy 7 (T7). Of these, 2 were focused exclusively on T7 results[10, 11]. In nine T7 NIPS+ cases, Pertile et al. confirmed one case as TP, 5 cases as FP, while 3 patients were missing follow-up. The positive case was determined to be fetal mosaicism and had intrauterine growth restriction[2]. A single case of T7 was found to be a false-positive in a follow-up study of women from the United States with positive NIPS[12]. Six positive NIPS results were obtained in a prospective study by Scott et al. Of the six, one patient did not have additional testing, 1 case was found to be CPM, and three patients had genetic testing with no abnormalities detected. Clinical outcomes for the six NIPS+ cases were termination of pregnancy in one case with ultrasound-detected fetal structural abnormality and five live births, two of which had fetal growth restriction[4]. Eighteen patients from a mixed-risk study received T7 NIPS+ results. Neither of the two low-risk patients underwent additional testing but reported normal follow-up. Two patients with unknown risk from serum screening underwent additional testing: in one, the karyotyping was normal and in the other, a benign chromosome 14 anomaly was identified. Among the 14 high-risk patients, only one patient received a pathogenic finding (arr7p22.3q36.3x2~3 (159.08 Mb)) and one patient received an uncertain finding (arr7q11.23q21.11x2 hmz (5.08 Mb)) from CMA. All others received findings of benign/likely benign chromosomal anomalies by CMA or reported normal follow-up in patients which did not undergo additional testing[5]. T7 NIPS+ results were the most numerous RAT reported by Chen et al. (2019). However, none of the 14 were true positives; nine were confirmed false positives while five were unverified[8]. Qi and colleagues reported findings of T7 NIPS+ cases in a large study from China. Of the thirty-five cases with suspected T7, 25 underwent additional testing for confirmation. In the patients with suspected T7 alone, only one was found to have 7g11.23x3 via CMA despite a normal karyotype; this patient terminated the pregnancy. The other cases with suspected T7 reported healthy children with normal development postnatally and without congenital anomalies requiring surgical intervention[10]. None of the 32 suspected T7 NIPS+ results were confirmed in the TRIDENT-2 study [van der Meij 2019]. Eleven suspected cases of T7 were identified in a large, mixed-risk population from China. Confirmatory CMA/karyotyping revealed benign chromosomal anomalies in two patients; however, all cases resulted in a normal live birth. Of 15 NIPS+ T7 results among 34,620 general risk pregnancies, only one was confirmed to be a true positive and 10 were confirmed to be false positives. Four results remained unverified[7]. Lai et al. (2021) reported 4 suspected cases of T7 among 86,193 general risk pregnancies. Three were confirmed to be false positives and one pregnancy was terminated[1]. From a combined 70,411 NIPS tests from two cohorts in China between 2015-2019, 39 were suspected T7 cases. Of these, a single case was confirmed as a true positive and 27 were confirmed to be false positives; however, 11 were unverified[11].

Study	Trisomy 7 TP	Trisomy 7 FP	Unverified/Missing	ТОР	
Pertile 2017	1	5	3		
Petersen 2017		1			
Scott 2018	1 mosaic	3	1	1	
Wan 2018	1; 1-VUS	16			
Chen 2019		9	5		
Qi 2019	2*	33		2	
Van der Meij		32			
2019					
Gou 2020		11			
Chen 2021	1	10	4		
Lai 2021		3		1	
Zhu 2021	1	27	11		
*includes case w/	*includes case w/multiple aneuploidies				

Trisomy 8

Pertile and colleagues (2017) reported three cases of suspected T8 from a cohort of 89,817 in the United States. Two of these were unverified, but one resulted in a normal live birth. The third case was found to be a case of maternal mosaicism (10% T8) following microarray, while placental biopsy did not confirm the T8 NIPS finding. This pregnancy was terminated[2]. Two cases of Trisomy 8 were detected with NIPS amongst more than 23,000 samples submitted to a

single laboratory. Both cases resulted in live births and with no abnormalities detected with subsequent genetic testing[4]. Five patients received a T8 NIPS+ result in a large mixed-risk study. Karyotyping was normal in one patient and in another patient without additional testing, the outcome was reported as normal at follow-up. In three patients who underwent subsequent CMA, the chromosomal anomalies identified were benign except for an arr1q44x1 (242 kb) which was categorized as uncertain[5]. Three of the five T8 NIPS+ results were confirmed false positives, while the remaining two were unverified in a study of more than 40,000 Chinese women[8]. Thirteen suspected cases of T8 were identified in the TRIDENT-2 study; however, none were confirmed[9]. In three cases of suspected T8, confirmatory testing failed to detect the trisomy and all pregnancy outcomes were for a normal live birth[6]. Seven suspected cases of T8 were found to be false positives in the study reported by Chen and colleagues (2021), while two suspected cases were unverified[7]. Three cases of suspected T8 were all found to be false positives with follow-up reported as live births and normal. Two of these had confirmatory SNP-microarray with arr(1-22)x2,(XN)x1 results while the third was unverified[1].

Study	Trisomy 8 TP	Trisomy 8 FP	Unverified/Missing	ТОР
Pertile 2017		1 [^] (maternal	2	1^
		mosaic, 10% T8)		
Scott 2018			2	
Wan 2018		4	1	
Chen 2019		3	2	
Van der Meij		13		
2019				
Gou 2020		3		
Chen 2021		7	2	
Lai 2021		3^	1^	
Van Den Bogaert	3			
2021				
^Patient listed in n	nultiple categories	S		

Trisomy 9

Four cases of suspected T9 were reported by Pertile and colleagues (2017). One of these was in a twin pregnancy with a normal live birth and co-twin demise at 9 weeks. Karyotyping of newborn blood failed to confirm the T9 NIPS result. A second case ended in miscarriage at 11 weeks and the NIPS result was unverified. Microarray in a third case confirmed the T9 NIPS result and there were multiple anomalies present on ultrasound. This pregnancy was terminated. The fourth case reported by Pertile et al. resulted in a live birth with IUGR and cleft palate; however, neither microarray nor karyotyping confirmed the T9 NIPS result [2]. An unconfirmed T9 NIPS result in a patient who received NIPS at 19 weeks was followed up by ultrasound which confirmed ventricular septal defect, cleft lip and palate, and pulmonary stenosis. This pregnancy was terminated [3]. Both cases of T9 were observed to be false positives in the Petersen et al. study[12]. Genetic testing on the products of conception following a miscarriage at 11 weeks confirmed a T9 NIPS+ finding[4]. A T9 NIPS+ result was unconfirmed by CMA in a patient of unknown risk from serum screening in a large, mixed-risk population[5]. Of the two T9 NIPS+ reported in Chen et al. (2019), one was unverified, and one was confirmed false positive[8]. Of the four suspected T9 cases identified in the study of NIPS implementation in The Netherlands, only one was found to be a true positive[9]. Two cases of suspected T9 were identified by NIPS in a study reported by Gou et al. (2020)[6]. In one case, follow-up CMA/karyotyping was normal; in the other case, an uncertain finding of arr 20p12.1x1 (420 kb) was revealed. In both cases, the pregnancy outcome was of a normal live birth. The single suspected case of T9 from a large study of Chinese women (N=34,620) was confirmed to be a false positive[7], as was the single case among 86,193 pregnancies in China reported by Lai et al. (2021)[1].

Study	Trisomy 9 TP	Trisomy 9 FP	Unverified/Missing	ТОР
Pertile 2017	1^	2	1	1^
Liang 2018				1
Petersen 2017		2		
Scott 2018	1			
Wan 2018		1		
Chen 2019		1	1	
Van der Meij 2019	1	3		
Gou 2020		2		
Chen 2021		1		
Lai 2021		1		
Van Den Bogaert	1			
2021				

Trisomy 10

Three cases of suspected T10 were reported by Pertile et al. (2017). Amniocentesis in two cases failed to confirm the NIPS result, although one case was determined to be CPM (65% T10). The third case was unverified and ended in miscarriage [2]. One case of T10 NIPS+ was determined to be likely fetal mosaicism after confirmatory CVS aCGH identified 50%-60% T10 in the fetus and ultrasound abnormalities including posterior cranial defect and diaphragmatic hernia. The pregnancy was terminated [4]. A patient with low *a priori* risk determined by serum screening reported normal outcome for the fetus, but without confirmatory testing. A high-risk patient from the same study underwent CMA which identified arr14q32.33x3 and arr1p21.1x1, both of which were benign [5]. The single case of T10 NIPS+ was unconfirmed in the study by Chen and colleagues (2019)[8]. The suspected T10 case in the Dutch TRIDENT-2 study was determined to be a false positive[9], as was the suspected T10 case reported by Gou et al. (2020)[6] and all three cases identified by Chen et al. (2021)[7].

Study	Trisomy 10 TP	Trisomy 10 FP	Unverified/Missing	ТОР
-------	---------------	---------------	--------------------	-----

Pertile 2017		2 (CPM x1)	1	
Scott 2018	1 (mosaic)			1
Wan 2018		1		
Chen 2019			1	
van der Meij 2019		1		
Gou 2020		1		
Chen 2021		3		

One false positive was reported by Chen et al. (2019)[8], by van der Meij and colleagues (2019)[9], by Oneda et al. (2020)[13], and Lai et al. (2021)[1]. In the Oneda (2020) study, the suspected T11 case was a situation of a vanishing twin; results of amniocentesis on the twin brother were normal. Of the three T11 NIPS+ results reported by Chen et al. (2021), two were confirmed to be false positives and one remained unverified[7].

Study	Trisomy 11 TP	Trisomy 11 FP	Unverified/Missing	ТОР
Chen 2019		1		
Van der Meij 2019		1		
Oneda 2020		1		
Chen 2021		2	1	
Lai 2021		1		

Trisomy 12

One study reported on findings of T12 (Pallister-Killian syndrome, OMIM# 601803) and identified three patients who were confirmed to have T12 (no false positive findings) [14]. A single high-risk patient received a T12 NIPS result which was not confirmed by karyotyping [5]. The single T12 NIPS+ result was verified as a false positive by Chen et al. (2019)[8]. Of the four suspected T12 cases in the Dutch TRIDENT-2 study, only one was confirmed to be true positive [9].

Study	Trisomy 12 TP	Trisomy 12 FP	Unverified/Missing	ТОР
Chau 2020	3			
Wan 2018		1		
Chen 2019		1		
Van der Meij 2019	1	3		

The patient receiving a NIPS+ for T14 was found to be a false positive in Petersen et al.'s study[12]. Two patients from a large laboratory received T14 NIPS+ results. Amniocentesis found no abnormalities detected with aCGH and the pregnancy resulted in a live birth with fetal growth restriction, fetal structural abnormalities, and postnatal anomalies (diaphragmatic hernia). The other case resulted in miscarriage and the T14 was confirmed through genetic testing of the products of conception [4]. In a large mixed-risk population, two high-risk individuals received T14 NIPS results. One had CMA which identified arr14q32.33x3 (603kb) and arr22q11.22x3 (134 kb), both of which were categorized as benign. Follow-up for the other patient was reported as normal [5]. Chen et al. reported three T14 NIPS+ results; two of the three were verified false positive and one was unconfirmed [8]. All three of the suspected T14 cases reported by van der Meij et al. were false positives [9], as were both cases identified in the study by Chen et al. (2021)[7]. The patient receiving T14 NIPS+ results was unverified through additional testing; however, follow-up was reported as a live birth and normal [1]. A single case of suspected T14 was reported in a large study from the United States; however, the result was unverified and the pregnancy ended in miscarriage [2].

Study	Trisomy 14	Trisomy 14 FP	Unverified/Missing	ТОР	
	ТР				
Pertile 2017			1 (miscarriage)		
Petersen 2017		1			
Scott 2018	1		1		
Wan 2018		2	1		
Chen 2019		2	1		
Van der Meij 2019		3			
Chen 2021		2			
Lai 2021		1^	1^		
^Patient listed in mu	^Patient listed in multiple categories				

Trisomy 15

Pertile et al. reported 14 cases of suspected T15. Of the verified cases, all three true positives ended in miscarriage, while a false positive was found to be CPM. Ten cases, all unverified, ended in miscarriage [2]. Two cases of T15 were reported by Scott et al. (2018). One resulted in a miscarriage at 11 weeks and genetic testing confirmed the T15 result. The other pregnancy was terminated after confirmatory genetic testing found fetal mosaicism and uniparental disomy [4]. A patient with high-risk serum screening results received a T15 NIPS result but considered a false positive as follow-up for the patient was reported as normal [5]. Verification of the two T15 NIPS+ results identified only one as a true positive [8]. Only one of the four suspected T15 cases identified in the TRIDENT-2 study was confirmed as a true positive [9]. A patient of intermediate risk after serum screening received a suspected T15 result from NIPS. CMA and karyotyping revealed a 46,XN(53)/47,XN,+15(47) result and the pregnancy was terminated [6]. A confirmed case of T15 was identified in a prospective study of 3,169 patients from China [13]. All three suspected cases of T15 were confirmed as false positives in study of 34,620 pregnant individuals from China [7].

Study	Trisomy 15 TP	Trisomy 15 FP	Unverified/Missing	ТОР
Pertile 2017	3 (miscarriage x3)	1 (UPD, CPM)	10 (miscarriage	
			x10)	
Scott 2018	1; 1 (mosaic,			1^
	UPD)^			
Wan 2018		1		
Chen 2019	1	1		
van der Meij 2019	1	3		
Gou 2020	1^			1^
Oneda 2020	1			
Chen 2021		3		
^Patient listed in m	ultiple categories			

Trisomy 16

Seven suspected cases of T16 were reported in a large study from the United States [2]. Of these, three were unverified (no diagnostic testing resulting in a live normal birth, one ectopic pregnancy, one miscarriage). Among the four cases that underwent amniocentesis, TFM was identified in one (termination of pregnancy), CPM/UPD/IUGR in one (fetal demise at 23 weeks), and UPD with fetal demise at 17 weeks in the third. The fourth case resulted in a normal live birth [2]. Of the three patients receiving a NIPS+ for T16, only one was confirmed to be a true positive [12]. Four patients received a T16 NIPS+ reported by Scott et al. (2018). Of these, three were found to have no abnormalities detected through additional genetic testing. All three resulted in a live birth; however, one was affected with fetal growth restriction and a second affected by fetal growth restriction, ultrasound-identified fetal structural abnormalities, and postnatal anomalies. The fourth case was found to have fetal mosaicism and structural abnormalities on ultrasound; the pregnancy was terminated [4]. Five patients received a NIPS+ result for T16 in a large mixed-risk study. Four of these were in patients deemed at high-risk based on serum screening. Clinical outcomes for the pregnancies was mixed: two high risk patients reported normal follow-up, one high-risk patient underwent CMA which found several variants which were categorized as benign, and two patients (one low-risk) both reported fetal loss but without confirmatory genetic testing [5]. All nine T16 NIPS+ were verified to be false positives [7], as were the 4 cases reported by Chen et al. (2019) and the single case from Gou et al. (2020)[6, 8]. Fourteen suspected T16 cases were identified in the TRIDENT-2 study; two of them were confirmed to be true positive and the remainder were not confirmed in the fetus [9].

Study	Trisomy 16 TP	Trisomy 16 FP	Unverified/Missing	ТОР
Pertile 2017	2 (TFM x1,	2^ (CPM x1)	3^ (ectopic x1,	1 (TFM)
	UPD x1)		miscarriage x1)	

Petersen 2017	1	2		
Scott 2018	1 (mosaic)^	3		1^
Wan 2018		1	4	
Chen 2019		4		
Van der Meij 2019	2	12		
Gou 2020		1		
Chen 2021		9		
Van Den Bogaert	4			
2021				
^Patient listed in multiple categories				

T17 NIPS+ result was not confirmed by CMA in a high-risk patient from a mixed-risk study reported by Wan and colleagues (2018). CMA findings were for arr14q32.33x3 (458 kb) and arr16p13.11x1 (204 kb), both benign [5]. A single suspected T17 result from NIPS was not confirmed in the large Dutch TRIDENT-2 study [9]. The suspected T17 NIPS+ results were determined to be false positives in two large studies of general risk patients from China [1, 7].

Study	Trisomy 17 TP	Trisomy 17 FP	Unverified/Missing	ТОР
Wan 2018		1		
Van der Meij 2019		1		
Chen 2021		1		
Lai 2021		1^	1^	
^Patient listed in multiple categories				

Trisomy 19

CMA findings of arr7q11.21x1 (619 kb) and arr14q32.33x3 (702 kb), both benign, did not confirm T19 NIPS+ result in a high-risk patient [5].

Trisomy 20

Three cases of suspected T20 were reported by Pertile et al. in a large study from the United States. None of the cases were verified, one pregnancy ended in miscarriage, one resulted in a diagnosis of IUGR and delivery at 35+2 weeks, while there was no outcome data for the third [2]. One case of T20 was reported in a large prospective study of pregnant patients in Australia. The case resulted in a live birth and no abnormalities were detected through amniocentesis [4]. Two patients (one low-risk from serum screening) received T20 NIPS+ results, neither of which was confirmed by karyotyping, in a large, mixed-risk study [5]. In a large study of more than 40,000 individuals, 5 T20 NIPS+ were identified. Of the four which were verified, only one was a true positive [8]. All eleven of the suspected T20 cases from the Netherlands were confirmed to be false positives [9], as was the single suspected case from a large, single study center from

China [6], and the two cases identified in another large (N=34,620) study from China [7]. Another case of suspected T20 was unverified, but also categorized as a false positive and follow-up was reported as a live birth and normal [1].

Study	Trisomy 20 TP	Trisomy 20 FP	Unverified/Missing	ТОР
Pertile 2017			3	
Scott 2018		1		
Wan 2018		2		
Chen 2019	1	3	1	
van der Meij 2019		11		
Gou 2020		1		
Chen 2021		2		
Lai 2021		1^	1^	
^Patient listed in multiple categories				

Trisomy 22

A large study from the United States confirmed a single case of fetal mosaicism (50% T22) after microarray and one false positive. The mosaic case ended in miscarriage at 12 weeks. Three others remained unverified, two of these ended in miscarriage [2]. A patient with a positive NIPS for T22 that was not confirmed by diagnostic testing was found to have a fetus with ventricular septal defect and persistent left superior vena cava by ultrasound and the pregnancy was terminated [3]. Three cases of T22 were reported by Scott et al. (2018). All three were confirmed to be true positives and all three resulted in miscarriage [4]. Five high-risk patients and one patient of unreported risk status received T22+ NIPS results. Three of these underwent karyotyping which failed to confirm the T22 NIPS result and one patient reported normal clinical follow-up without testing. Two patients underwent CMA analysis that identified benign chromosomal anomalies, but not T22 [5]. Two of the four T22 NIPS+ results were confirmed false-positive while the other two were unverified [8]. Among the five suspected cases of T22 from the TRIDENT-2 study, additional testing confirmed one true positive and four false positives[9]. Four suspected cases of T22 were reported by Gou et al. (2019); three of the four had a pregnancy outcome of a normal live birth following normal or benign CMA/karyotyping results, while the fourth case had a miscarriage at 15 weeks[6]. A mixed-risk prospective study in China identified one suspected case of T22 which was not confirmed after amniocentesis [13], nor was the single case reported by Lai et al. following SNP-microarray [1]. Of the eight T22 NIPS+ results obtained in a study of general risk patients from China, only one was confirmed to be a true positive. Three of the remaining cases were confirmed as false positives and four were unverified [7].

Study	Trisomy 22 TP	Trisomy 22 FP	Unverified/Missing	ТОР
Pertile 2017	1 (TFM, miscarriage)	1	3 (miscarriage x2)	
Liang 2018		1^		1^
Scott 2018	3 (miscarriage x3)			

Wan 2019		4	1		
Chen 2019		2	2		
Van der Meij 2019	1	4			
Gou 2020		4 (miscarriage			
		x1)			
Oneda 2020		1			
Chen 2021	1	3	4		
Lai 2021		1			
Van Den Bogaert	2				
2021					

Other Rare Suspected Aneuploidies

Six studies reported other rare suspected aneuploidies among their NIPS results. Six cases of suspected monosomies (M14 x4, M16 x2) were reported in a study of 15,362 mixed-risk pregnancies; CMA was performed in 2 high-risk (determined by serum screening) cases with arr14q32.33x3 (690 kb and 748 kb), both benign. In the other 4 cases without additional testing (1 high risk, 1 low risk, 2 risk NR), follow-up contact was reported as normal [5].

Four cases of suspected dual aneuploidy (T7/T2; T7/T3; T7/T11; T7/X0) and two cases of suspected multiple aneuploidy (T7/T8/T20/M13/M22/T3; T7/T8/T2) were identified among the 35 singleton pregnancy patients out of 31,250 who received NIPS in a study from China [10]. All six of the cases underwent karyotyping of amniotic fluid cells; the patient with a T7/X0 NIPS result was confirmed for monosomy X, while CMA testing revealed 7q21.13q36.3x3/Xp22.33p11.22x1. The fetus was delivered at 37+4 weeks and exhibited macrocephaly and discordance of limbs with body size at birth. Karyotyping in the patient with the T7/T8/T20/M13/M22/T3 NIPS+ result was normal (46,XN); however, the patient elected to terminate the pregnancy. The patient with suspected T7/T8/T2 experienced a miscarriage at 16 weeks; karyotyping did not confirm the suspected aneuploidies. The remaining cases resulted in live births with normal physical and psychomotor development postnatally and no congenital anomalies that required surgical intervention.

The Dutch TRIDENT-2 study reported 3 cases of dual aneuploidy (T5/T7; T7/T13; T13/T20) in a cohort of 56,818 individuals with expanded findings (non-common aneuploidies, CNVs). None of the three dual aneuploidies was confirmed in the fetus [9].

In addition to RATs, five rare autosomal monosomies (Chr 14, Chr 16 (x3), Chr 22) were identified among more than 18,000 individuals tested from a single center in China [6]. Clinical outcomes for the suspected M14 and M22 cases were normal live births and no chromosomal anomalies detected using CMA/karyotyping. In two of the suspected M16 cases, CMA/karyotyping detected no anomalies; however, one case identified fetal structural abnormalities and the pregnancy was terminated. The other M16 case with normal CMA/karyotyping resulted in a normal live birth. CMA analysis identified an arr16p11.2x1 (1.18)

Mb) in the third suspected M16 case; this anomaly was categorized as benign, and the clinical outcome was a normal live birth.

Four suspected cases of monosomy 14 (M14) were reported from a large population of general risk pregnancies in China. Three of the four were confirmed to be false positives and the last case remained unverified [7].

Lai et al. (2021) reported two cases of suspected rare monosomy (M14, M16). Both were categorized as false positives and reported follow-up of live births and normal offspring; however, only the M14 case was confirmed false positive with SNP-microarray. Additionally, they reported 24 cases of suspected multiple RATs, many of which also included suspected common (T13/T18/T21) trisomies. Four of these were categorized as true positives [1].

Supplemental Table 22. Maternal conditions identified through NIPS.

Study	Ν	Results
Malignancies		
Amant et al. 2015	3	Ovarian 1; Lymphoma 2
Bianchi et al. 2015	10	8 were known
Dharajiya et al. 2018	18/55	55 nonreportable NIPT cases with altered genomic profiles were cataloged. Of these, 43 had additional information available to enable follow- up. A maternal neoplasm was confirmed in 40 of these cases: 18 malignant, 20 benign uterine fibroids, and 2 with radiological confirmation but without pathological classification.
Ji et al. 2019	41	Breast cancer, n=10; lymphoma, n=9; liver cancer, n=9; gastric cancer, n=4; colorectal cancer, n=3; teratoma, n=1; nasopharyngeal carcinoma, n=1; lung cancer, n=1; leiomyosarcoma, n=1; dysgerminoma, n=1; cervical cancer, n=1; majority of cancers were stage IV at diagnosis
Snyder et al. 2016	5	Cases reported in Bianchi et al. 2015
SCAs Bianchi et al. 2015 Martin et al. 2020 Yang et al. 2021 CNVs	2 100 1	47, XXX (2); significant no follow-up (204 SCA; no f/up for 143) Suspected maternal X chromosome abnormality confirmed in 100/106 cases mos 45,X[85]/47,XXX[15]
Brison et al. 2017	Г	Clinically actionable CNV/c
Brison et al. 2019	5 16	Clinically actionable CNVs DMD CNVs: 10 pathogenic, 4 benign, 2 unclassified. 3 were known DMD families.
Martin et al. 2018	2/1	6 cases suspected based on fetal risk score of 50% for 22q11.2 deletion; follow-up available for 3 individuals; 2 with confirmed maternal 22q11.2 deletion, 1 with confirmed fetal deletion and unconfirmed maternal copy number for 22q11.2 region but with tetralogy of Fallot and learning disabilities (associated with 22q11.2 deletion syndrome)
Oneda et al. 2020	9/3053	8/9 had symptoms of identified disorders; 1/9 asymptomatic Ehlers-Danlos genetic diagnosis
Zhou et al. 2019	6	Reported as ways to demonstrate a higher FPR in fetal results; these were not pathogenic.
Other results		
Snyder et al. 2016	1	Mosaic trisomy 8

Supplemental Figure 6. NIPS test failure/no call rates in randomeffects meta-analysis.

Study	n Fail	Ν	Proportion	95%-CI \	Veight
Bevilacqua et al. 2017	29	20078	0.0014	[0.0010; 0.0021]	3.3%
Garite et al. 2017	6	3132 -	0.0019	[0.0007; 0.0042]	2.9%
Langlois et al. 2017	11	1165 🕂	0.0094	[0.0047; 0.0168]	3.1%
Kagan et al. 2018	10	688	0.0145	[0.0070; 0.0266]	3.1%
LeConte et al. 2018	12	420	0.0286	[0.0148; 0.0494]	3.1%
Liang et al. 2018	34	32431	0.0010	[0.0007; 0.0015]	3.3%
D. Yu et al. 2019	485	20290 +	0.0239	[0.0218; 0.0261]	3.4%
Dyr et al. 2019	137	23986	0.0057	[0.0048; 0.0067]	3.3%
Gil et al. 2019	52	1122	0.0463	[0.0348; 0.0603]	3.3%
Kypri et al. 2019	5	305 +	0.0164	[0.0053; 0.0378]	2.8%
Liang et al. 2019	499	94085	0.0053	[0.0048; 0.0058]	3.4%
Noh et al. 2019	10	327	0.0306	[0.0148; 0.0555]	3.1%
Rousseau et al. 2019 Illumina	138	3593	0.0384	[0.0324; 0.0452]	3.3%
Rousseau et al. 2019 Thermo-Fisher	161	3593	0.0448	[0.0383; 0.0521]	3.3%
van der Meij et al. 2019	1127	73239	0.0154	[0.0145; 0.0163]	3.4%
Y. Chen et al. 2019	21	42931	0.0005	[0.0003; 0.0007]	3.2%
Yao et al. 2019	175	15626 +	0.0112	[0.0096; 0.0130]	3.4%
Borth et al. 2020	98	13607 🖃	0.0072	[0.0059; 0.0088]	3.3%
Garshasbi et al. 2020	31	11414 🔤	0.0027	[0.0018; 0.0039]	3.3%
He et al. 2020	5	111 • •	0.0450	[0.0148; 0.1020]	2.8%
Lu et al. 2020	306	37006	0.0083	[0.0074; 0.0092]	3.4%
Luo et al. 2020	46	40311	0.0011	[0.0008; 0.0015]	3.3%
Margiotti et al. 2020	150	9985	0.0150	[0.0127; 0.0176]	3.3%
Oneda et al. 2020	175	3053	0.0573	[0.0493; 0.0662]	3.4%
Panchalee et al. 2020	462	8572 +	0.0539	[0.0492; 0.0589]	3.4%
Serapinas et al. 2020	27	850	0.0318	[0.0210; 0.0459]	3.3%
Xu et al. 2020	189	31515 🔛	0.0060	[0.0052; 0.0069]	3.4%
Zheng et al. 2020	28	13149	0.0021	[0.0014; 0.0031]	3.3%
Guy et al. 2021	32	8651 +	0.0037	[0.0025; 0.0052]	3.3%
Khalil et al. 2021	3	961 +	0.0031	[0.0006; 0.0091]	2.6%
Lai et al. 2021	69	86262	0.0008	[0.0006; 0.0010]	3.3%
Random effects model		602458 🔶	0.0085	[0.0058; 0.0123] 1	00.0%
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 1.1163$, p	= 0	1 1 1 1			
			0.1		
		Toot Eailuro Poto			

02 0.04 0.06 0.0 Test Failure Rate

Supplemental Table 23. Summary of all included studies reporting clinical outcomes and diagnostic performance of NIPS in a general-risk population.

Study Information	Population	NIPS	Results
Alyafee et al., 2021	N = 200	NIPS Platform	T21:
	low risk: 187	IONA NIPT	TP 7; TN 193; FP 0; FN 0
Country	(93.5%) high risk:	(commercially	
Saudi Arabia	13 (6.5%)	marketed by	All low-risk cases were confirmed to be TN; 7/7 (100%)
		YourGene Health)	high-risk cases were TP
Time frame	Inclusion criteria		
October 2019 to August	singleton	NIPS description	T18:
2020	pregnancy,	NSG of the	TP 4; TN 195; FP 1; FN 0
	natural	multiplexed DNA	
Risk of Bias	conception,	libraries were	All low-risk cases were confirmed to be TN, 4/5 (80%) high-
ROBINS-I: moderate	gestational age	performed according	risk cases were TP
	≥10 wks	to the protocol	
Funding/potential COI	(confirmed by	provided by the	T13:
None	ultrasound)	manufacturer (Ion	TP 1; TN 199; FP 0; FN 0
		Chef and IonS5 XL,	
	Exclusion criteria	Life Technologies,	All low-risk cases were confirmed to be TN; 1/1 (100%)
	NR	SD, United States),	high-risk case was TP
		and 12 samples per	SCA: NR
	Participant	chip (Ion 540TM	
	characteristics	Chip-Life	CNV: NR
	Mean (range)	Technologies) were	
	age: 35.69 (21-	analyzed	RAT: NR
	48) yrs		Diagnostic Procedures: NR
		Mean (range) FF:	
		13.38% (4-31%)	Identification of maternal conditions: NR

Study Information	Population	NIPS	Results
	Mean (range)		Psychosocial outcomes: NR
	gestational age:		
	19.14 (10-32) wks		
	Mean (range)		
	BMI: 30.84 (15-		
	48)		
Amant et al., 2015	N = 4000	NIPS Platform NR	T21 : NR
	screened, 3 with		
Country Belgium	abnormal profiles	NIPS description	T18 : NR
		Samples with QS >2	
Timeframe NR		labeled as poor	T13 : NR
	Inclusion criteria	quality which	SCA: NR
Risk of Bias	3 profiles with an	prompted repeat	
ROBINS-I: Serious	aberrant quality	sampling.	CNV: NR
	score and	25/4000 had	
Funding/potential COI	reproducible	elevated QS, 4/23	RAT: NR
One author reports	genome-wide	repeat samples had	Diagnostic Procedures: NR
being the founder of	representation	QS >2. 3/4 GR	
and stockholder in	(GR) profiles	profiles were	Identification of maternal conditions:
Cartagenia, which	reminiscent of	reproducible	all 3 tumor-like NIPS-derived GR profiles were confirmed by
provides software for	cancer-related	Individuals with	FISH or CMA (3/4000); diffusion-weighted magnetic
clinical analysis of	CNV.	repeatedly high	resonance imaging (WB-DWI), which revealed a tumorous
genomics data. The		QS values and	mass in all 3 cases
analysis used in this	Exclusion criteria	reproducible	
study has been licensed	NR	aberrant GR profile	Psychosocial outcomes: NR
to Cartagenia, for which		involving aberrations	
the author's laboratory	Participant	of >2	
receives license fees	characteristics		
	NR		

Study Information	Population	NIPS	Results
		chromosomes were	
		referred to the	
		oncology unit.	
Basaran et al., 2020	N = 101	NIPS Platform	T21:
·		variety of	TP 45; FP 4; FN 2
Country Turkey	Inclusion criteria	, commercial NIPS:	
	NR	Nifty, Materni21,	T18:
Timeframe		Panorama,	TP 6; FP 4
November 2013 and	Exclusion criteria	Harmony, Prena,	
October 2016	NR	Clarigo, b-sure	T13:
		(Verify), Tranquility	TP 2; FP 5
Risk of Bias	Participant		SCA:
ROBINS-I: moderate	characteristics	NIPS description	TP MX, 5; XXX, 2; XXY, 2; XYY, 0
	Mean (range)	NR; vary by	TN
Funding/potential COI	maternal age:	manufacturer	FP MX,5; XXX, 0; XXY, 3; XYY, 1
None	37.5 (29-44) yrs		FN
		Cases were classified	
	Gestational age	into five groups	
	(range): 12.0-24.5	according to the	CNV:
	wks	ultrasound findings.	TP 1; FP 3
	W KS	Karyotyping,	
		interphase FISH and	RAT: NR
		micro-array	Diagnostic Procedures: NR
		techniques were	
		used for follow-up	Identification of maternal conditions: NR
		studies.	
			Psychosocial outcomes: NR
Bevilacqua et al., 2018	N = 14115	NIPS Platform	T21 : NR

Study Information	Population	NIPS	Results
Country	Inclusion criteria	Harmony Prenatal	T18 : NR
Belgium and Spain	patients	Test (Ariosa	
	undergoing NIPS	Diagnostics, Inc., San	T13 : NR
Timeframe	in 2 centers who	Jose, CA, USA)	SCA: (overall)
April 2013 to December	opted for SCA		TP 44
2016	analysis	NIPS description	FP 74
		NR	Other:
Risk of Bias	Exclusion criteria		Overall FPR min-max %: 0.52%-0.83%
ROBINS-I: Serious	NR	Follow-up with	
		prenatal or	45,X+ n=80; f/u in n=61; PPV: n=16 (24.6%); FPR min-max
Funding/potential COI	Participant	postnatal	%: 0.33%-0.46%
None	characteristics	karyotyping was	
	Cohort 1:	available for	47,XXX+ n=35; f/u in n=22; PPV: n=5 (22.7%); FPR min-max
	patients had NIPS	118/161 NIPS+ cases	%: 0.12%-0.21%
	for 1) high risk for	(73.3%); calculated	
	common fetal	PPV and range of	47,XXY+ n=36; f/u in n=30; PPV: n=19 (63.3%); FPR min-max
	trisomies	FPR for each SCA	%: 0.08%-0.12%
	(assessed by 1 st -		
	trimester		47,XYY+ n=10; f/u in n=5; PPV: n=5 (100%); FPR min-max %:
	combined testing,		0.0%-004%
	2 nd -trimester		
	triple/quadruple		CNV: NR
	biochemistry		
	testing, or		RAT: NR
	ultrasound		Diagnostic Procedures: NR
	findings) (n=552,		
	17.5%) or 2)		Identification of maternal conditions: NR
	because NIPS was		
	chosen as the		Psychosocial outcomes: NR
	primary method		

Study Information	Population	NIPS	Results
	of screening		
	(n=2610, 82.5%)		
	Cohort 2: NR		
	Median (range)		
	age at testing:		
	36.5 (18.6-49.8)		
	yrs		
	Madian (ranga)		
	Median (range) gestational age:		
	13.3 (10.0-34.7)		
	wks		
	WKS		
Bianchi, Parsa, et al.,	N = 18,161	NIPS Platform	T21 : NR
2015	-, -	Illumina	
	Inclusion criteria		T18 : NR
Country	Individuals	NIPS description	
United States	undergoing NIPS	Genome-wide	T13 : NR
	for autosomal	massively parallel	SCA:
Timeframe NR	aneuploidy who	sequencing of cfDNA	Other: 2 FP cases of XXX were documented to be maternal
	also selected the	isolated from	in origin (out of 18,161 samples with sex chromosome
Risk of Bias	fetal sex test	maternal plasma	results)
ROBINS-I: Serious	option and had a	was performed as	
	result for SCA	per previously	No sex aneuploidy detected: XX (n=8721) concordant
Funding/potential COI	status reported in	validated laboratory	52/8721; discordant karyotype 8/8721; discordant
All authors are	the laboratory	procedures using	ultrasound 10/8721; no follow-up 8651/8721
employees of Illumina or	information	methods for sample	
receive	management	preparation,	

Study Information	Population	NIPS	Results
honorarium/research	system database	sequencing, and	XY n=9236: concordant 49/9236; discordant karyotype
funding from Illumina	used for this	analysis that were	4/9236; discordant ultrasound 10/9236; no follow-up
	query	similar to those	9173/9236
		reported by Futch et	
	Exclusion criteria	al. SCA were	Sex aneuploidy detected n=204: MX (n=148) concordant
	NR	classified into one of six discrete	9/148; discordant (karyotype 35/148; no follow-up 104/148
	Participant	categories: XX, XY,	XXX (n=38) concordant 1/38; discordant 12/38; no follow
	characteristics	monosomy X, XXX,	up 25/38
	Mean (SD) age:	XXY, and XYY based	
	35.7 (4.9) yrs	on the normalized	XXY (n=12) concordant 2/12
		chromosome values	Discordant 0/12; no follow up 10/12
	Mean (SD)	obtained for both X	
	gestational age:	and Y.	XYY (n=6) concordant 1/6; discordant 1/6; no follow-up 4/6
	14.0 (4.0) wks		
			CNV: NR
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Bianchi, Chudova, et al.,	N = 125,426;	NIPS Platform	T21 : NR
2015	3757 positive for	verifi Prenatal Test	
	1+ aneuploidies	(Illumina)	T18 : NR
Country	Inclusion criteria	NIPS description	T13 : NR
United States	NIPS performed	screens for the	SCA: NR
	within specified	presence of whole	

Study Information	Population	NIPS	Results
Timeframe February 15,	time frame.	chromosome	CNV: NR
2012, to September 30,	Additional info	aneuploidy for	
2014	from those with	chromosomes 13,	RAT: NR
	abnormal results	18, and 21. Testing	Diagnostic Procedures: NR
Risk of Bias	by NIPS whose	for sex chromosome	
ROBINS-I: Serious	clinician	aneuploidy by	Identification of maternal conditions:
	voluntarily	analyzing	Seven of the 10 cases of maternal cancer reported to the
Funding/potential COI	informed the	sequencing counts	clinical laboratory had multiple aneuploidies (Table 2). Of
Authors are employees	laboratory at any	for chromosomes X	the 39 cases of multiple aneuploidy, 7 cases (18% [95%
of/receive research	time prior to	and Y is optional.	CI,7.5%-33.5%]) were in pts with an occult cancer. 3757
funding/honoraria from	November 15,	The method uses	(3.0%) were positive for 1 or more aneuploidies involving
multiple commercial	2014 <i>,</i> that	massively parallel	chromosome 13, 18,21, X, or Y. In 10 of these aneuploidy-
laboratories (Illumina,	maternal cancer	sequencing of cfDNA	detected cases, the referring clinician voluntarily reported
Myriad Genetics,	had been	isolated from	to the clinical laboratory within weeks to months after the
Novartis, Pfizer,	diagnosed after	maternal plasma	initial discussion regarding the clinical significance of the
Sequenom, Ariosa)	NIPS		positive NIPS results that the patient had been diagnosed
		To evaluate the	with a malignancy. In 2 cases (leiomyosarcoma and
	Exclusion criteria	frequency of	unspecified adenocarcinoma), the referring physicians
	NR	reported maternal	reported that the women were critically ill, and they
		malignancies in	declined to approach them for consent to participate in this
	Participant	relation to the	study, so 8 patients in study. The expected cancer rate in
	characteristics	overall frequency of	pregnant women is about 0.1%. This series of cancer cases,
	Mean (range)	aneuploidy positive	reported voluntarily, represents 0.008% (10/125 426) of the
	age: 35 (23-39)	results, all clinical	laboratory case volume, a cancer frequency that is 10-fold
	yrs	laboratory reports,	lower than what might be expected. However, this patient
		as well as all tests	series is inherently incomplete.
	Mean (range)	that were cancelled	
	gestational age:	due to abnormal	Psychosocial outcomes: NR
	13.9 (10-20) wks	underlying	
		chromosomal	

Study Information	Population	NIPS	Results
		patterns generated	
		within the study	
		time frame, were	
		reviewed and the	
		findings were	
		grouped into 1 of 5	
		categories: single	
		trisomy, single	
		monosomy, single	
		sex chromosome	
		aneuploidy, single	
		sex chromosome	
		aneuploidy plus	
		single trisomy, or	
		multiple	
		aneuploidies.	
		Statistical analysis of	
		the reported	
		proportions was per-	
		formed using	
		Clopper-Pearson	
		exact binomial 2-	
		sided confidence	
		intervals at the 95%	
		level (using R version	
		3.1.2)	
Borth et al., 2020	N = 13,607	NIPS Platform	T21:
	consecutive pts	bioinformatic re-	TP 89; TN 2566; FP 7; FN 1; PPV = 89/96
Country		analysis of existing	
Germany	Inclusion criteria	sequencing data	T18:

Study Information	Population	NIPS	Results
	Individuals who	using VeriSeq NIPS	TP 19; TN 2496; FP 4; FN 0; PPV = 19/23
Timeframe	previously	Solution v2 pipeline	
December 2017 to April	underwent NIPS;		T13:
2019	Both singleton	NIPS description:	TP 9; TN 2486
	and twin	NIPS results positive	FP 6; FN 0; PPV = 9/15
Risk of Bias	pregnancy	for fetal aneuploidy	SCA: MX
ROBINS-I: Moderate	samples of ≥10	were considered	TP 5; TN 2482; FP 5; FN 0; PPV = 5/10
	weeks gestation	confirmed when	
Funding/potential COI	were included in	validated by either	CNV: NR
None	the study	invasive prenatal	
		diagnostics or an	RAT: NR
	Exclusion criteria	anomaly observed	Diagnostic Procedures: NR
	known vanishing	on ultrasound that	
	twin or a higher-	matched the high-	Identification of maternal conditions: NR
	grade multiple	risk NIPS call.	
	pregnancy		Psychosocial outcomes: NR
	Participant		
	characteristics		
	Mean (SEM) age:		
	33.68 (0.04) yrs		
	Mean (SEM)		
	gestational age:		
	12.48 (0.02) wks		
	Mean (SEM) BMI:		
	24.87 (0.05)		

Study Information	Population	NIPS	Results
	Reason for		
	screening (%):		
	AMA, 42.3;		
	positive US/other		
	screen, 6.0; other		
	medical, 5.5;		
	patient wish, 46.2		
Brison et al., 2017	N = 9289	NIPS Platform	T21 : NR
		Illumina	
Country Belgium	Inclusion criteria		T18 : NR
	≥11 wks	NIPS description	
Risk of Bias	gestation age	CNV analysis:	T13 : NR
ROBINS-I: Serious		Appears to be "in-	SCA: NR
	Exclusion criteria	house" but not	
Funding/potential COI	NR	explicitly stated, and	CNV: NR
One author reports		unclear if "KU	
being the founder of	Participant	Leuven, Belgium" or	RAT: NR
and stockholder in	characteristics	"University Hospital,	Diagnostic Procedures: NR
Cartagenia, which	NR	Antwerp, Belgium."	
provides software for		Blood sampling	Identification of maternal conditions:
clinical analysis of		cfDNA extraction	Consistent with population estimates, 10% nonrecurrent
genomics data. The		and library	and 0.4% susceptibility CNVs for low-penetrant genomic
analysis used in this		preparation were	imbalances were identified. 5 clinically actionable variants
study has been licensed		performed as	were reported.
to Cartagenia, for which		described in	
the author's laboratory		previous study.	Psychosocial outcomes: NR
receives license fees		Massively parallel	
		sequencing was	
		performed on the	
		HiSeq2500 or	

Study Information	Population	NIPS	Results
		NextSeq500	
		sequencer (Illumina)	
		in fast mode,	
		producing 50-bp or	
		75-bp single end	
		reads, respectively.	
		The results are part	
		of the routine	
		clinical work-up and	
		paid-for-service.	
		Routine diagnostic	
		analysis of	
		chromosomal Z, ZZ,	
		bin median (BM),	
		and other median	
		(OM) scores in	
		combination with a	
		visual inspection of	
		the genomic	
		representation	
		profiles was	
		performed as	
		described. In this	
		way, clinically	
		relevant maternal	
		aberrations were	
		identified.	
		Microarray	
		confirmation	

Study Information	Population	NIPS	Results
		performed for each	
		of the 5 cases	
Prices et al. 2010		NIPS Platform	T21 : NR
Brison et al., 2019	N = 26,123 NIPS		
Country Doloium	analysis; 16	NR	TIONE
Country Belgium	maternal CNVs in		T18 : NR
T :	the DMD gene	NIPS description	T (3, ND
Timeframe July 2017	were detected	NIPS and CNV	T13: NR
through June 2018		detection were	SCA: NR
	Inclusion criteria	carried out as	
Risk of Bias	Those who	described in other	CNV: NR
ROBINS-I: Moderate	consented to	studies. Briefly, low-	
	receive	pass genome	RAT: NR
Funding/potential COI	secondary	sequencing	Diagnostic Procedures: NR
None	findings	generated ~10	
		million single-end	Identification of maternal conditions:
	Exclusion criteria	reads of 36 bp per	CNVs in DMD are thus present in 1/1632 women. 9
	NR	sample	DMD/BMD or variable, 7 LB or VUS
	Participant		Psychosocial outcomes: NR
	characteristics		
	NR		
Chau et al., 2020	N = 29,007; 3	NIPS Platform	T21 : NR
	w/12p	NR	
Country China			T18 : NR
	Inclusion criteria	NIPS description	
Timeframe 2016-2017	cases with	genome wide NIPS	T13 : NR
	abnormal	methodology for	SCA: NR
Risk of Bias	amount of DNA	screening	
ROBINS-I: Moderate	originating from		CNV:
Study Information	Population	NIPS	Results
--------------------------	-------------------------------	---------------------	---
	the entire p-arm		Other 3 cases with abnormal amount of DNA originating
Funding/potential COI	of chromosome		from the entire p-arm of chromosome 12 were detected,
2 authors are employees	12 by NIPS		yielding an incidence of 3/27800 (0.011% or 1 in ~9266) in
of a company that			singleton pregnancies. Clinical details, diagnostic testing
provides NIPS in Hong	Exclusion criteria		results, and pregnancy outcome were available and
Kong and Macau; other	NR		reviewed which disclosed PKS in these fetuses
authors with no COI to			
declare	Participant		RAT: NR
	characteristics		Diagnostic Procedures: NR
	Mean age: 33.1		
	yrs		Identification of maternal conditions: NR
	Mean gestational		Psychosocial outcomes: NR
	age: 12 ⁺⁵ wks		
	Mean FF: 12.66%		
Y. Chen et al., 2019	N = 42910	NIPS Platform	T21:
	(42,931 originally	JingXin	TP 103
Country China	sampled,	BioelectronSeq 4000	FP 27
	however, 21	System	PPV 79.23%
Timeframe	cases failed)		
April 2015 to December		NIPS description	T18:
2018	Inclusion criteria	Semiconductor	TP 17
	(1) gestational	sequencing	FP 14
Risk of Bias	age between 12 ⁺⁰		PPV 54.84%
ROBINS-I: Serious	wks and 26 ⁺⁶ wks,		
	(2) single		T13:
Funding/potential COI	pregnancy, and		TP 4
None	(3) BMI < 100		FP 25
			PPV 13.79%

Study Information	Population	NIPS	Results
	Exclusion criteria		SCA: Overall
	(1) Individuals		TP 37
	with		FP 75
	chromosomal		PPV (overall) 33.04%
	abnormalities, (2)		
	multifetal		CNV:
	pregnancy, (3)		TP 20
	those who have		FP 49
	received stem		PPV (overall) 28.99%
	cell therapy and		
	transplant		RAT:
	surgery, (4) those		TP 3
	who received		FP 29
	allogeneic blood		PPV (overall) 9.38
	products within 1		Diagnostic Procedures: NR
	year, and (5)		
	received		Identification of maternal conditions: NR
	immunotherapy		
	within 4 weeks		Psychosocial outcomes: NR
	Participant		
	characteristics		
	Maternal blood		
	samples were		
	collected from		
	Ningbo Women		
	and Children		
	Hospital in China		

Study Information	Population	NIPS	Results
	Gestational age		
	group, %:		
	12-15 ⁺⁶ : 12.9%		
	16-19 ⁺⁶ : 57.7%		
	20-23 ⁺⁶ : 24.5%		
	24-26 ⁺⁶ : 4.9%		
	Age, range: 18-49		
	yrs		
M. Chen et al., 2019	N = 362 multifetal	NIPS Platform	T21:
	& singleton	Illumina	Other: detected 2 cases trisomy 21. (1) from DCDA twin -
Country China	mixed		TOP, no karyotype (2) other DCDA, NIPT Normal/T21,
		NIPS description	Karyotype Normal/T21
Timeframe December	Inclusion criteria	Extraction of cfDNA	
2016 to April 2018	Multifetal	was performed with	when the FF was above 3%, the Z-score value was higher
	gestations opting	QIAamp Circulating	than 3 (above the cut-off value) and the fetal aneuploidy
Risk of Bias	for NIPS; Random	Nucleic Acid Kit	could be detectable with a theoretical sensitivity of 51.9%.
ROBINS-I: Moderate	selection of	(Qiagen, Hilden,	When the FF increased to 4%, the theoretical sensitivity
	singleton	Germany) according	was 85.7%
Funding/potential COI	gestations opting	to the manufacturer	
Government and	for NIPS	protocol. Libraries	T18 : NR
foundation funding; no		were built using	
COI noted	Exclusion criteria	TruSeq Nano DNA	T13 : NR
	NR	Library Prep Kit from	SCA: NR
		Illumina. DNA	
	Participant	libraries were	CNV: NR
	characteristics	subjected to 50bp	
	203 randomly	long paired-end	RAT: NR
	selected	sequencing on	Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
	singleton	NextSeq CN500	
	pregnancies, 69	platform.	Identification of maternal conditions: NR
	twins, and 90		
	higher-order		Psychosocial outcomes: NR
	multifetal		
	pregnancies (85		
	triplets, 2		
	quadruplets, 1		
	quintuplet, 1		
	sextuplet, and 1		
	octuplet)		
	Mean (SD) age:		
	31.2 (5.7)		
	Mean (SD)		
	gestational age:		
	Singleton, 17 (3)		
	wks		
	Twin, 20 (5) wks		
	Triplet, 13 (2) wks		
	Quadruplet, 12,		
	13		
	Quintuplet, 12		
	Sextuplet, 11		
	Octuplet, NA		
Chen et al., 2021	N = 34620	NIPS Platform	T21:
		NIFTY (BGI, China)	n=121; f/u in 108; TP=99; PPV 91.67%
Country China	Inclusion criteria		
		NIPS description	T18:

Study Information	Population	NIPS	Results
Timeframe October	consecutive	NR	n=44; f/u in 31; TP=16
2017 to March 2019	recruitment;		
	opted or referred		T13:
Risk of Bias	for basic NIPS		n=44; f/u in 35; TP=9; PPV 23.68%
ROBINS-I: Moderate			SCA : (n=124
	Exclusion criteria		(45,X: n=54; 47,XXX: n=24; 47,XXY: n=24; 47,XYY: n=5;
Funding/potential COI	NR		unclassified other SCA n=17); 45,X TP=9, PPV=22.50%;
None			47,XXX TP=8; PPV=53.33%; 47,XXY TP=14, PPV=87.50%;
	Participant		47,XYY TP=5, PPV=100%; other SCA PPV=6.25%
	characteristics		
	Mean age: 31.5		CNV:
	yrs		n=57, f/u in 41; TP=21, PPV (CNVs >= 5Mb)=51%; PPV
			Chr5=25.00%; PPV Chr4=66.67%; PPV Chr7=100%; PPV
	AMA, 32.81%		Chr2=100%
	BMI: normal,		
	72.31%		RAT:
			n=71, f/u in 55; TP=3, PPV=5.66%
	FF mean: 9.94%		Diagnostic Procedures: NR
	Test failure 1 st		Identification of maternal conditions: NR
	time: n=270		
	(0.78%)		Psychosocial outcomes: NR
Costa et al., 2018	N = 924	NIPS Platform	T21:
		NR	The FPR and PPVs were 6.6% (95% Cl, 5%-8.6%) and 8.8%
Country France	Inclusion criteria		(95% Cl, 2.9%-19.3%) for MSS versus 0% (95% Cl, 0%-0.47%)
	NR	NIPS description	and 100% (95% Cl, 59.0%-100%) for NIPS.
Timeframe May 2015 to		massive parallel	
February 2016	Exclusion criteria	sequencing using a	Specificity MSS 93.4% (91.4%-95.0%) vs NIPS 100% (99.5%-
	Individuals	whole-genome	100%)
Risk of Bias	exhibiting fetal	approach, as	

Study Information	Population	NIPS	Results
ROBINS-I: Moderate	anomalies on the	described by Jensen	FN MSS 28.6% (3.7%-71.0%) vs NIPS 0% (0-41.0%)
	1 st -trimester scan	et al. w/some slight	
Funding/potential COI	(including nuchal	modifications. Z-	T18:
3 authors	translucency ≥3.5	scores were	No cases
employees/shareholders	mm)	calculated for the	
of CERBA; other authors		targeted	T13:
report no COI	Participant	chromosomes 13,	one patient was positive for trisomy 13 but did not choose
	characteristics	18, and 21, as	to undergo invasive testing. Placental biopsies were
	Individuals	previously	performed at birth, abnormal profiles for markers located
	undergoing	described; and the	on chromosome 13, thus suggesting confined placenta
	aneuploidy	FF was evaluated	mosaicism. The baby suffered from IUGR yet presented a
	screening w/NIPS	using the coverage	normal karyotype at birth
	in 9 centers; 546	method, as	SCA: NR
	with spontaneous	described by Kim et	
	pregnancies; 378	al. The results were	CNV: NR
	with ART-induced	expressed as	
	pregnancies)	positive or negative	RAT: NR
		according to the	Diagnostic Procedures:
	Median (IQR)	following metric	MSS hi NIPS+ n=5, all got invasive; MSS low NIPS+ n=2 both
	age: 33.3 (30.0-	criteria: total count	got invasive, MSS low NIPS— n=730, 8 got invasive, MSS hi
	37.5) yrs	9 million and	NIPS— n=52 invasive=0
	AMA: 36.6%	estimated fetal DNA	
		fraction 4%.	Identification of maternal conditions: NR
	Median (IQR)		
	BMI: 22.5 (20.6-	compared the FPR	Psychosocial outcomes: NR
	25.7)	and PPV of standard	
		MSS w/those of NIPS	
	Median (IQR)	for T21. when	
	gestational age:	ultrasounds were	
	$12^{+4} (12^{+2} - 13^{+1})$	normal, blood	

Study Information	Population	NIPS	Results
		samples for both	
		conventional MSS	
		and NIPS	
Dai et al., 2021	N = 17,428	NIPS Platform	T21:
		NR	37/17428 NIPS+
Country	Inclusion criteria		32/37 had confirmatory amnio
China	NR	NIPS description	TP: 27, FP: 5
		In-house	
Timeframe	Exclusion criteria		T18:
July 13, 2017 to January	1. Either parent		16/17428 NIPT+
22, 2020	had chromosome		13/16 w/amnio
	abnormalities;		TP: 8; FP: 5
Risk of Bias	2. Either parent		
ROBINS-I: Moderate	had family history		T13 : NR
	of genetic		SCA (overall)
Funding/potential COI	diseases;		91/17428 NIPS+
None	3. Ultrasound-		78/91 had confirmatory amnio
	identified fetal		TP: 30, FP: 48
	structural		
	abnormalities;		CNV: NR
	4. Pregnant		
	individual had		RAT: NR
	malignant tumors		Diagnostic Procedures: NR
	during		
	pregnancy.		Identification of maternal conditions: NR
	Participant		Psychosocial outcomes: NR
	characteristics		
	NR		

Study Information	Population	NIPS	Results
Dharajiya et al., 2018	N = 450,000	NIPS Platform	T21 : NR
	pregnant	NR	
Country	patients.		T18 : NR
United States	Additional	NIPS description	
	analysis	Maternal blood	T13 : NR
Timeframe NR; >3 yrs of	performed for	samples	
NIPS	>79,000	(approximately 10	SCA: NR
	research-	mL) were collected	
Risk of Bias	consented	in Streck BCT tubes.	CNV: NR
ROBINS-I: Serious	samples. In total,	Anticoagulated	
	55 nonreportable	blood samples were	RAT: NR
Funding/potential COI	NIPS cases with	subjected to plasma	Diagnostic Procedures: NR
Employment,	altered genomic	fractionation, DNA	
leadership, consultant,	profiles were	extraction, library	Identification of maternal conditions:
stock ownership in	cataloged. Of	preparation, and	20 benign neoplasms, 12 lost to follow-up, 5
commercial laboratories	these, 43 had	next-generation	unknown/none, 18 malignant. In total, 55 nonreportable
(Sequenom, Pathway	additional	sequencing as	NIPS cases with altered genomic profiles were cataloged
Genomics)	information	previously described	(out of 450000). Of these, 43 had additional information
	available to		available to enable follow-up. A maternal neoplasm was
	enable follow-up	developed a novel	confirmed in 40 of these cases: 18 malignant, 20 benign
		algorithm to identify	uterine fibroids, and 2 with radiological confirmation but
	Inclusion criteria	additional	without pathological classification. In a population of
	NR	neoplasms with	pregnant women who submitted a blood sample for NIPS,
		CNAs located	an abnormal genomic profile not consistent with fetal
	Exclusion criteria	elsewhere in the	abnormalities was detected in about 10 out of 100000
	NR	genome	cases. A subset of these observations (18 of 43; 41.9%) was
			attributed to maternal malignant neoplasms
	Participant		
	characteristics		Psychosocial outcomes: NR
	NR		

Study Information	Population	NIPS	Results
DiNonno et al., 2019	N = 1,035,844	NIPS Platform	T21:
		Natera	7802 T21 positives, 884 were followed up. 837 confirmed
Country	Inclusion criteria		by genetics. PPV - 94.7%
United States	NR	NIPS description	
		Testing was subject	T18:
Timeframe	Exclusion criteria	to revisions in the	2205 T18 positives, 333 were followed up. 304 confirmed
2014-2017 w/quarterly	NR	protocols in April	by genetics. PPV - 91.3%.
assessments		2015 (version 2),	
	Participant	February 2016, and	T13:
Risk of Bias	characteristics	January 2018	1207 T13 positives, 118 were followed up. 80confirmed by
ROBINS-I: Serious	NR	(version 3). An	genetics. PPV - 67.8%
		algorithm to screen	
Funding/potential COI		for a select group of	SCA (MX):
Authors are		microdeletions was	2017 MX positives, 120 were followed up. 93 confirmed by
employees/hold		introduced in March	genetics. PPV - 77.5%
stock/paid consultants		2014 with	
for Natera, Inc.		procedural and	CNV: NR
		algorithm changes in	
		April 2015, February	RAT: NR
		2016, and January	
		2018	Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Dyr et al., 2019	N = 30,826	NIPS Platform	Average risk: positive 5/1562 (0.32%)
	multifetal	NR; implied	All other stats for overall group:
Country	samples; average	Sequenom	
United States	risk: n=1562		T21 : reported negative n=28,561; reported positive n=435;
		NIPS description	communicated TP n=16; communicated FP n=4;

Study Information	Population	NIPS	Results
Timeframe	Inclusion criteria	All samples were	communicated FN n=7; relative observed sensitivity
October 2011-December	Multifetal	tested for T21 as	98.40%; relative observed specificity 99.99%; relative
2017		well as presence or	observed PPV 99.08%
	Exclusion criteria	absence of	
Risk of Bias	NR	chromosome Y.	T18 : reported negative n=28,814; reported positive n=138;
ROBINS-I: Serious		Beginning in	communicated TP n=8; communicated FP n-1;
	Participant	February 2012 all	communicated FN n=4; relative observed sensitivity
Funding/potential COI	characteristics	samples were also	97.16%; relative observed specificity >99.99%; relative
multiple authors	Samples	tested for T18 and	observed PPV 99.28%
employed by	submitted as	T13. Select samples	
commercial lab	average risk	were opted in for	T13 : reported negative n=28,887; reported positive n=62;
(Sequenom)	screening, no	"Enhanced	communicated TP n=3; communicated FP n=7;
	high-risk	Sequencing" by their	communicated FN n=0; relative observed sensitivity
	indication	ordering healthcare	>99.99%; relative observed specificity 99.98%; relative
	reported,	provider for seven	observed PPV 88.71%
	comprised 5.1%	common	
	of the total	microdeletions	SCA: NR
	sample cohort	associated with	
	and only 0.8% of	eight syndromes:	CNV: NR
	all positives	22q deletion	
	reported	(DiGeorge	RAT: NR
		syndrome), 5p	
		deletion (Cri-du-chat	Diagnostic Procedures: NR
		syndrome), 15q	
		deletion (Prader-	Identification of maternal conditions: NR
		Willi syndrome/	
		Angelman	Psychosocial outcomes: NR
		syndrome), 1p36	
		deletion syndrome,	
		11q deletion	

Study Information	Population	NIPS	Results
		(Jacobsen	
		syndrome), 8q	
		deletion (Langer-	
		Giedion syndrome),	
		and 4p deletion	
		(Wolf-Hirschhorn	
		syndrome). T16 and	
		T22 were also	
		analyzed for	
		additional	
		chromosomal events	
		as part of the	
		Enhanced	
		Sequencing Series	
Garite et al., 2017	N = 3074; control:	NIPS Platform	The frequency of positive aneuploid test results (autosomal
	1414	Varied by practice	trisomy and sex chromosome aneuploidy) per procedure
Country			was more than double, increasing from 6.9% during the
United States	Inclusion criteria	NIPS description	control period to 14.8% during the last 6 months of the
	Individuals	NR	study period. However, while the number of total abnormal
Timeframe	undergoing either		and aneuploidy results per procedure increased, the overall
January 2012 through	amniocentesis or		number of abnormal results dropped from 21.8/month to
June 2014; historical	CVS for genetic		13.7/month, and aneuploidy decreased from 16.7/month
cohort: January through	testing		to 10.5/month in the last 6 months, a decrease of 37% for
June 2010			each.
	Exclusion criteria		SCA: NR
Risk of Bias	NR		
ROBINS-I: Moderate	Dorticipant		CNV: NR
Funding/notontial CO	Participant characteristics		RAT: NR
Funding/potential COI	characteristics		

Study Information	Population	NIPS	Results
All but one author are	patients		Diagnostic Procedures:
employees of MedNax,	undergoing NIPS		During the control period, there were a total of 1,440
Inc. which owns/	within large		procedures in 1,414 mothers (2 procedures in 28 twins and
manages Obstetrix/	multi-state MFM		3 procedures in 1 triplet) of which there were 1,169
Pediatrix Medical Group	practices		amniocenteses (193 per month) and 280 CVS (47 per
(funded study)	consortium		month).
			During the 30 months of the study period, there were 3,132 procedures in 3,074 mothers. In the last 6 months of the study period, amniocenteses dropped to 52/month and CVS to 18/month, for an overall decline from the control period of 73% and 62%, respectively.
			There were significant decreases in the percentage of procedures performed because of advanced maternal age and abnormal serum screening, while there were significant increases in the percentage performed because of abnormal ultrasound findings and because of NIPS results.
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Garshasbi et al., 2020	N = 11414	NIPS Platform	T21:
	samples	BGI Hong Kong	TP 90
Country Iran	obtained. 11223		TN 11118
	w/completed	NIPS description	FP 4
Timeframe July 1, 2015,	NIPS	identify T21, T18,	FN 1
to December 31, 2016		T13 and SCA, all	Other Twin pregnancy (n=443): T21 3 true pos, 0 FP, 0 FN,
	Inclusion criteria	other chromosomes	440 TN, PPV 100% (29.42-100.00), NPV 100.00 (99.17-
Risk of Bias			100.00);

Study Information	Population	NIPS	Results
ROBINS-I: Moderate	pregnant women	were screened for	
	from over 150	abnormalities	T18:
Funding/potential COI	medical centers,		TP 3
None	located in 27		TN 11174
	cities of Iran.		FP 36
	NIPS was		FN 0
	provided as a		Other Twin pregnancy (n=443): T18 1 true pos, 0 FP, 0 FN,
	secondary screen		442 TN, PPV 100% (2.50-100.0), NPV 100.00 (99.17-100.00)
	test for		
	T21/T18/T13 and		T13:
	SCA in high-risk		TP 7
	pregnancies,		TN 11205
	including		FP 1
	pregnant		FN 0
	individuals >16		Other
	years old, w/a		SCA (Overall):
	singleton		TP 21; TN 11042; FP 8; FN 1
	pregnancy, >10		
	wks of gestation		MX: TP 10; FP 5; TN 11197; FN 1
	Exclusion criteria		XXX: TP 4; FP 2; TN 11207; FN 0
	NR		
			XXY: TP 4; FP 1; TN 11208; FN 0
	Participant		
	characteristics		XYY: TP 3; FP 0; TN 11210; FN 0
	Mixed-risk		
	Median (range)		CNV: NR
	age: 35 (14-49)		
	yrs		RAT: NR
			Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
	AMA, 55.34%		
			Identification of maternal conditions: NR
	Median (range)		
	gestational age:		Psychosocial outcomes: NR
	15 (10-37)		
	No risk factors:		
	31%		
Gil et al., 2020	N = 997 twin	NIPS Platform	T21 : n=17
	pregnancies	Harmony (Ariosa	TP 16/17 (94.1%)
Country England,		Diagnostics, CA)	FP: 1
Belgium	Inclusion criteria		FN: 1
	1 st -trimester	NIPS description	
Timeframe October	gestational age	DANSR assays	T18 : n=10
2012 to January 2018		targeting sequences	TP: 9/10 (90%)
	Exclusion criteria	on chrs 13, 18 and	1 case was MC w/both affected
Risk of Bias	NR	21 for chr	FP: 1
ROBINS-I: Moderate		quantitation and	FN: 1
	Participant	SNPs on chrs 1-12	
Funding/potential COI	characteristics	for fetal-fraction	T13: n=2
Funded by non-profit;	twin pregnancies	measurement.	TP: 1/2 (50%)
some costs covered by	self-referred for	Products of the	FN: 1
Ariosa Diagnostics which	NIPS testing;	DANSR assays can be	
had no role in any	individuals	quantified using	All the other trisomic cases were a DC pregnancy in which
aspect of data analysis	referred for NIPS	either NGS or a	only one fetus was trisomic and the cotwin was non-
or the manuscript	testing after	custom CMA; both	trisomic.
	routine combined	were used during	
	testing	the course of this	NIPS correctly called 962/968 TN (99.4%) In the non-
		study. The data were	trisomic group, four cases were classified as trisomy 13, one
		analyzed using the	

Study Information	Population	NIPS	Results
	Median (IQR)	FORTE algorithm,	as trisomy 18 and one as trisomy 21 and, therefore, the
	age: 38.0 (34.5-	which calculates	combined FPR was 0.62% (6/968)
	41.0)	probability scores	SCA: NR
		for fetal trisomy,	
	Median (IQR)	with >1% considered	CNV: NR
	gestational age:	to be high	
	12.1 (10.7-12.9)	probability.	RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Gomes et al., 2019	N = 1272 (1193	NIPS Platform	T21 : NR
	low risk; 49	NR	
Country Portugal	intermediate risk,		T18 : NR
	30 high risk)	NIPS description	
Timeframe March 2017-		NR	T13 : NR
Feb 2018	Inclusion criteria		SCA: NR
	NR		
Risk of Bias			CNV: NR
ROBINS-I: Serious	Exclusion criteria		
	multifetal		RAT: NR
Funding/potential COI	pregnancy or a		Diagnostic Procedures: Study group: high risk 83.3% had
None	major fetal		invasive tests; intermediate risk 12.2% had invasive test
	abnormality were		
	excluded		Identification of maternal conditions: NR
	Participant		Psychosocial outcomes: NR
	characteristics		

Study Information	Population	NIPS	Results
	Individuals		
	attending 1 st		
	semester		
	combined		
	screening at a		
	single institution		
	Mean (SD) age:		
	30.05 (5.9)		
	Mean (SD) BMI:		
	25.06 (5.31)		
Gou et al., 2020	N = 18016	NIPS Platform	T21 : NR
		NR	
Country China	Inclusion criteria		T18 : NR
	Gestational age	NIPS description	
Timeframe March 2017	12-23 wks	Whole-genome	T13 : NR
to February 2020	undergoing NIPS	sequencing of	SCA: NR
		cffDNA from	
Risk of Bias	Exclusion criteria	maternal blood was	CNV: NR
ROBINS-I: Moderate	NR	performed on an ion	
		proton platform;	RAT : 33 RATs were detected by NIPT from 18,016 samples,
Funding/potential COI	Participant	retrospective	with a screening rate of 0.18%.
None	characteristics	analysis of de-	
	Individuals	identified patient	20/33 had normal pregnancy outcome; 4/33 adverse
	undertaking self-	information.	pregnancy outcomes (TOP, miscarriage, fetal loss);
	pay NIPS through		3/33 lost to follow-up
	NHS or private		Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
	healthcare		
	providers after		Identification of maternal conditions: NR
	either a low		
	chance (<1:150)		Psychosocial outcomes: NR
	combined test		
	result or no prior		
	screening		
	Patient choice of		
	confirmatory test		
	(amnio,		
	karyotyping,		
	CMA); 14/33		
	were NA for risk		
	from serum		
	screening; rest		
	were either high		
	or intermediate		
	risk		
	Mean maternal		
	age: 30.0 yrs		
	Mean gestational		
	age: 21.1 wks		
Guy et al., 2021	N = 8655	NIPS Platform	T21:
	samples, (8651	IONA	sens 173/175 (98.9%, 95% CI 95.9-99.9)
Country United	w/ outcomes)		PPV: 96.7% (95% CI 92.8-98.4%)
Kingdom		NIPS description NR	
	Inclusion criteria		Combined T18/T13:
Timeframe			Sens 47/52 (90.4%; 95% CI 80.0%-96.8%)

Study Information	Population	NIPS	Results
January 2016 to March	electing to	pregnancy outcomes	PPV 92.2% (95% CI 81.5%-96.9)
2019	undertake self-	were divided into	SCA: NR
	pay NIPT through	non-trisomic, T21,	
Risk of Bias	NHS or private	T18 or T13 by either	CNV: NR
ROBINS-I: Serious	healthcare	confirmed karyotype	
	providers after	(n=219) or	RAT: NR
Funding/potential COI	either a low	phenotypical	Diagnostic Procedures: NR
Yourgene is contracted	chance (<1:150)	normality of the	
to supply the IONA	combined test	neonate. All	Identification of maternal conditions: NR
system to St. Georges	result or no prior	abnormal karyotype	
University Hospitals NHS	screening	results were cross	Psychosocial outcomes: NR
Foundation Trust as the		checked with	
basis of the SAFE test.	Exclusion criteria	regional cytogenetic	
None of the authors	Pregnancies lost	registers to ensure	
have pecuniary interests	to follow up or	accuracy.	
in Yourgene or the SAFE	w/incomplete		
test service	reporting of		
	outcomes		
	Participant		
	characteristics		
	Samples		
	originated from		
	secondary		
	screening for a		
	high-chance		
	(>1:150)		
	combined		
	screening result		
	or a screen-		

Study Information	Population	NIPS	Results
	positive QUAD		
	test in the SAFE		
	test collaborative		
	network (a total		
	of 14 NHS trusts)		
	and from		
	individuals		
	electing to		
	undertake self-		
	pay NIPT through		
	NHS or private		
	healthcare		
	providers after		
	either a low		
	chance (<1:150)		
	combined test		
	result or no prior		
	screening (a total		
	of 13 providers).		
	Median (IQR)		
	age: 34.6 (31.1-		
	38.1)		
	Median (IQR)		
	gestational age:		
	12.0 (11.0-14.0)		
He et al., 2020	N = 146 twin	NIPS Platform	T21 : Of the 141 cases included in the study, only one DCDA
	pregnancies	In-house	case had a high-risk NIPS result for T21 (Z scores=10.46)
Country China			and no cases of T18 or T13 were detected. Confirmation by

Study Information	Population	NIPS	Results
	Inclusion criteria	NIPS description	karyotyping revealed one true-positive case T21. According
Timeframe March 2016	participants	sequencing	to the follow-up results, the 140 cases with negative NIPS
to January 2018	≥18years old with	performed using a	results were euploid, and the sens and spec for T21 by NIPS
	twin pregnancies	Fetal aneuploidies	were both 100%
Risk of Bias	≥10 wks	Trisomy Detection	
ROBINS-I: Moderate	gestation	Kit (semi-conductor	T18: no cases
		sequencing; Daan	
Funding/potential COI	Exclusion criteria	Gene Corp.).	T13: no cases
None	Individuals who	Sequencing data	SCA: NR
	had a definite	analyzed by a	
	chromosomal	standard pipeline	CNV: NR
	abnormality or a	according to the	
	family history of	manufacturer's	RAT: NR
	genetic disorders	protocol. The results	Diagnostic Procedures: NR
	or who suffered	were from the	
	from tumors or	chromosome-wide	Identification of maternal conditions: NR
	received	aneuploidy test for	
	allogeneic blood	whole chromosomes	Psychosocial outcomes: NR
	transfusion and	(Stouffers Z-scores).	
	transplantation	Z-scores ≥3 marked	
	recently	as high risk.	
		Karyotyping or	
	Participant	clinical follow up	
	characteristics	were used as the	
	Median (range)	gold standard to	
	age: 33 (22-45)	evaluate sensitivity	
		and specificity of	
	Median (range)	NIPS in this	
	gestational age:	population	
	16.1 (10-23)		

Study Information	Population	NIPS	Results
	DCDA, n=107		
	(73.2%)		
	MCDA, n=39		
	(26.7%)		
Hu et al., 2019	N = 8152	NIPS Platform	T21 :
	undergoing NIPT.	NR	TP 20
Country China	11 failed QC.		FP 5
	8141 remaining.	NIPS description	PPV: 80%
Timeframe March 2016		NR	
to May 2017	Inclusion criteria		T18 : NR
	NR		TP 3
Risk of Bias			FP 4
ROBINS-I: Moderate	Exclusion criteria		PPV: 60%
	NR; samples		
Funding/potential COI	failing QC		T13:
None			TP 1
	Participant		FP 10
	characteristics		PPV: 14.28%
	Mixed-risk from a		SCA: Overall
	single hospital		TP 11
	Age by groups,		FP 13
	AMA=13.79%		PPV: 45.83%
	Gestational age		CNV:
	range, 9-34 wks		TP 13
			FP 18
			RAT: NR

Study Information	Population	NIPS	Results
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Ji et al., 2019	N = 639 NIPS; 542	NIPS Platform	T21 : NR
	w/follow-up	BGI	
Country China			T18 : NR
	Inclusion criteria	NIPS description	
Timeframe NR	Positive for	NR	T13 : NR
	multiple chr		SCA: NR
Risk of Bias	aneuploidies on	Participants were	
ROBINS-I: Moderate	initial NIPS	classified as having maternal	CNV: NR
Funding/potential COI	Exclusion criteria	malignancies based	RAT: NR
None	NR	on the confirmed medical record	Diagnostic Procedures: NR
	Participant	within 1-yr of NIPS	Identification of maternal conditions:
	characteristics		41 cancer cases; 501 non-cancer
	Mean (SD) age:		
	32.1 (5.6) yrs		multiple chromosomal aneuploidies findings of any type
			(reproducible, non-reproducible, or uncertain) were
	Mean (SD)		associated with a PPV of 7.6% (41/542) for diagnosing
	gestational age:		maternal malignancies
	17 (3.3) wks		
			Psychosocial outcomes: NR
Kagan et al., 2018	N = 1400 (699	NIPS Platform	T21 : NR
	randomized to	Harmony Prenatal	In the US+NIPS group, there were no FP cases, while the
Country Germany	FTCS; 701	Test (Roche)	age-adjusted FPR in the FTCS group was 2.5%.

Study Information	Population	NIPS	Results
Timeframe October	randomized to	NIPS description	T18 : NR
2015- December 2016	US+NIPS)	DANSR and	
		simultaneous	T13 : NR
Risk of Bias	Inclusion criteria	microarray-based	SCA: NR
ROBINS-I:	Individuals	assay of non-	
	undergoing 1 st -	polymorphic (chro-	CNV: NR
Funding/potential COI	trimester	mosomes 13, 18, 21,	
One author is employed	screening at a	X and Y) and	RAT: NR
by Roche; Roche/Ariosa	single institution	polymorphic loci to	Diagnostic Procedures: 6/17 high risk for T21 opted for
provided kits for		estimate	diagnostic testing
Harmony Prenatal Test	Exclusion criteria	chromosome	
	maternal age <18	proportion and FF	Identification of maternal conditions:
	yrs, CRL		
	measurement		Psychosocial outcomes: NR
	>84 mm or <45		
	mm, and multiple		
	pregnancy,		
	including		
	vanishing twins		
	Participant		
	characteristics		
	US+NIPS group,		
	median risk for		
	T21 was 1:10000;		
	FTCS median risk		
	for T21 was		
	1:3787.		
	_		

Study Information	Population	NIPS	Results
	Median age: FTCS		
	33.9 yrs; NIPS		
	33.9 yrs		
	Median		
	gestational age:		
	FTCS 12.7; NIPS		
	12.7		
Kagan et al., 2019	N = 1400 (699	NIPS Platform	T21:
	randomized to	Harmony Prenatal	24 cases (1.7%) no follow-up
Country Germany	FTCS; 701	Test (Roche)	
	randomized to		Median risk of T21 w/FTCS 1:3,787. Adding 3 new markers
Timeframe October	US+NIPS)	NIPS description	median risk was 1:6,418. If the risks of T21 were calculated
2015 to December 2016		DANSR and	without MSS, they ranged between 1:2,787 and 1:6,219
	Inclusion criteria	simultaneous	depending on the combination of markers used.
Risk of Bias	Unselected	microarray-based	
ROBINS-I:	individuals	assay of non-	In the US+NIPS group, median risk was 1:10,000
	undergoing 1 st -	polymorphic (chro-	irrespective of the mode of risk calculation in those with
Funding/potential COI	trimester	mosomes 13, 18, 21,	uninformative NIPS test results. Only 0-0.6% of cases had a
One author is employed	screening	X and Y) and	risk between 1:100-1:999
by Roche; Roche/Ariosa		polymorphic loci to	
provided kits for	Exclusion criteria	estimate	While there were no FP in the US+NIPS group, with eFTCS,
Harmony Prenatal Test	maternal age <18	chromosome	the FPR were between 0.9 and 3.2%.
	yrs, CRL	proportion and FF	
	measurement		T18 : NR
	>84 mm or <45		
	mm, and multiple		T13 : NR
	pregnancy,		SCA: NR
	including		
	vanishing twins;		CNV: NR

Study Information	Population	NIPS	Results
	miscarriage		
	w/out further		RAT: NR
	autopsy or		Diagnostic Procedures: NR
	genetic analysis;		
	no results for		Identification of maternal conditions: NR
	either screening		
	or newborn		Psychosocial outcomes: NR
	exam/genetic		
	testing avail		
	Participant		
	characteristics		
	Median age: FTCS		
	33.9 yrs; NIPS		
	33.9 yrs		
	Median		
	gestational age:		
	FTCS 12.7; NIPS		
	12.7		
Kagan et al., 2020	N = 1127 (1062	NIPS Platform	T21 : NR
	low-risk; 65 high-	Harmony Prenatal	
Country Germany	risk)	Test (Roche)	T18 : NR
		performed by TOMA	
Timeframe January to	Inclusion criteria	Advanced	T13 : NR
December 2018	NR	Biomedical Assays	SCA: NR
Risk of Bias	Exclusion criteria	NIPS description NR	CNV : NIPS 22q11.2DS+ n=3 (all in low-risk group); FP=3,
ROBINS-I: Moderate	maternal age <18 years, CRL		TP=0

Study Information	Population	NIPS	Results
Funding/potential COI	measurement of	FISH analysis was	RAT: NR
One author employed	>84 or <45 mm,	performed when	Diagnostic Procedures: NR
by Roche; 3 authors	and multiple	CMA provided a	
employed by TOMA	pregnancy,	normal result to	Identification of maternal conditions: NR
Laboratory w/out	including	exclude the	
ownership shares; one	vanishing twins;	presence of rare	Psychosocial outcomes: NR
author expert panel	miscarriage w/o	confined placental	
member for Roche and	further autopsy	mosaicism for	
Menarini Biomarkers;	or genetic	22q11.2DS in	
Ariosa sponsored the	analysis	cytotrophoblasts.	
investigator-initiated		Parental testing was	
study	Participant	carried out by FISH	
	characteristics	analysis. After	
	Median (IQR)	delivery, a detailed	
	age: low risk, 33.9	neonatal clinical	
	(31.0-36.7); high	examination was	
	risk, 35.8 (30.4-	performed, including	
	38.3)	further genetic	
		testing on cord	
	Median (IQR)	blood or placenta by	
	gestational age:	FISH and/or CMA.	
	low risk, 12.9	For those	
	(12.5-13.3); high	w/negative NIPS: all	
	risk, 12.9 (12.4-	children are	
	13.2)	examined directly	
		after birth and ≥6	
		times by a	
		pediatrician w/in the	
		1 st yr of life (all were	

Study Information	Population	NIPS	Results
		>6 mos of age at	
		time of manuscript)	
Khalil et al., 2021	N = 1003 twin	NIPS Platform	T21 : MC: n=276; T21+ n=1, normal n=275
	pregnancies	IONA	
Country			DC: n=685; T21+ n=13, T18+ n=1, T13+ n=1, normal n=670
United Kingdom	Inclusion criteria	NIPS description	
	≥16 yrs old; US	NGS and a	TP: T21 n=13; T13 n=1
Timeframe February	documentation of	proprietary	FP: T18 n=1
2015 to June 2018	twin pregnancy at	algorithm. Screening	TN: n=942
	≥10 wks	was for trisomies	FN: T18 n=1
Risk of Bias	gestational age	21,13, and 18.	
ROBINS-I: Moderate		Primary outcome DR	Sample failure rate 3/961 (0.31%)
	Exclusion criteria	and specificity for	SCA: NR
Funding/potential COI	Participants who	twin gestations for	
3 authors	have Down	the three trisomies	CNV: NR
current/former	syndrome or	and test failure rate.	
employees of Yourgene	other chr		
(formerly Premaitha	abnormality		RAT: NR
Health)	themselves,		
	children <16 yrs		Diagnostic Procedures: NR
	old, adults w/		
	learning		Identification of maternal conditions: NR
	disabilities or		
	mental illness or		Psychosocial outcomes: NR
	who are unable		
	to give informed		
	consent for		
	themselves,		
	adults who are		
	unconscious or		

Study Information	Population	NIPS	Results
	very severely ill;		
	adults who have		
	a terminal illness		
	or current		
	malignancy,		
	adults in		
	emergency		
	situations,		
	prisoners and		
	young offenders,		
	or any person		
	considered to		
	have a		
	particularly		
	dependent		
	relationship with		
	investigators. The		
	exclusion criteria		
	included higher		
	order multiple		
	pregnancies, fetal		
	demise or		
	vanishing twin,		
	known		
	mosaicism,		
	partial trisomy or		
	translocations, or		
	known		
	aneuploidy or		
	malignancy in the		

Study Information	Population	NIPS	Results
	pregnant		
	individual		
	Participant		
	characteristics		
	2 groups of		
	pregnant		
	individuals		
	w/twin		
	pregnancies:		
	Group 1 those		
	with a low chance		
	of carrying a		
	fetus with a chr		
	abnormality, on		
	the basis of the		
	conventional		
	prenatal		
	screening tests		
	Group 2 included		
	women w/a high		
	chance, on the		
	basis of		
	conventional		
	prenatal		
	screening tests		
	(>1:150 at term),		
	and who		
	attended the		
	fetal medicine		

Study Information	Population	NIPS	Results
	clinics at the		
	study sites for		
	prenatal		
	counseling and		
	possible		
	diagnostic testing		
	(CVS or amnio).		
Kypri et al., 2019	N = 10564; SCA	NIPS Platform	Twins: (blinded mixed retrospective and prospective
	n=305; twin	Veracity; Illumina	validation of n=306 samples)
Country Cyprus	T21/T18/T13		T21: NIPS+ n=3; TP=3
	n=306	NIPS description	
Timeframe NR; large		NR	T18: NIPS+ n=1; TP=1
prospective samples	Inclusion criteria		
from lab until February 2018	NR		T13: NIPS+ n=1; TP=1
	Exclusion criteria		Singletons: (mixed-risk)
Risk of Bias	samples		NIPS: n=10280; follow-up n=10280; TN n=10280;
ROBINS-I: Moderate	w/insufficient		spec=99.98% (95% CI 99.93%-99.998%); NPV=100% (95% CI
	fetal fraction		99.96%-100%)
Funding/potential COI			
Majority authors	Participant		T21: NIPS+ n=126; follow-up n=44; TP=44; sens=100% (92-
current/former	characteristics		100%); PPV=100% (92-100%)
employees of NIPD	general		
Genetics Public	population		T18: NIPS+ n=24; follow-up n=10; TP=10; sens=100% (69-
Company	pregnant		100%); PPV=100% (69-100%)
	individuals		
	(singletons and		T13: NIPS+ n=16; follow-up n=7; TP=5; sens=100% (48%-
	twins) from		100%); PPV=71% (29-96%)
	multiple referral		Twins: SCAs (blinded retrospective validation of n=305 plasma samples)

Study Information	Population	NIPS	Results
	centers in 21		45,X: NIPS+=7; TP=7
	countries		47,XXY: NIPS+ n=4; TP=4
			47,XXX: NIPT+ n=2; TP=2
			47,XYY: NIPT+ n=1; TP=1
			Singletons:
			NIPS: n=6200; follow-up n=6200; TN=6200; spec=99.95% (99.86-99.99%); NPV = 100% (99.94-100%)
			45,X+ n=16; follow-up n=7; TP=4; sens=100% (40-100%);
			PPV=57% (18-90%)
			47,XXX+ n=6; follow-up n=2; TP=2 47,XXY+ n=10; follow-up n=4; TP=4
			47,XYY+ n=10, 1010w-up n=4, 1P=4 47,XYY+ n=3; follow-up n=0
			48,XXYY+ n=1; follow-up n=1; TP=1
			48,7771111-1,1010W-up11-1,11-1
			CNV: NR
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions:
			NR
			Psychosocial outcomes: NR
Lai et al., 2021	N = 86193	NIPS Platform	T21+ n=368; TP=330; FP=38; FN=3, refused=51;
		NR	sens=99.1%; spec=99.95%; PPV=89.67%; NPV=99.996%;
Country China	Inclusion criteria		FPR=0.05%; FNR=0.90%; screen positive rate=0.5%
	Age ≥16 yrs,	NIPS description	
Timeframe May 2015 to	singleton	Libraries of 96	
December 2018	pregnancy 12 wks	samples with	

Study Information	Population	NIPS	Results
	gestational age,	barcodes were then	T18+ n=100; TP=84, FP=16, refused=8; FN=1; sens=98.82%;
Risk of Bias	and no history of	pooled together	spec-99.98%; PPV=84%; NPV=99.999%; FPR=0.02%;
ROBINS-I: Moderate	transfusion or	with equimolar and	FNR=1.18%; SPR=0.13%
	transplantation	subjected for single-	
Funding/potential COI	during past years	end sequencing (37	T13+ n=57; TP=30, FP=27, refused=2; FN=0; sens=100%;
NR		base-pairs with	spec-99.97%; PPV=52.63%; NPV=100%; FPR=0.03%;
	Exclusion criteria	another 8 base-pairs	FNR=0%; SPR=0.07%
	Individuals	as index) on a	
	w/intermediate/	Nextseq-500	SCA:
	high-risk	platform; required	45,X+ n=191; TP=23, FP=168, refused=48; FN=3;
	pregnancy from	sequencing quality	sens=88.46%; spec=99.8%; PPV=12.04%; NPV=99.996%;
	1 st or 2 nd	value (Q30) was	FPR=0.2%; FNR=11.54%; SPR=0.29%
	trimester	>85%, and GC	47,XXX+ n=53; TP=36, FP=17, refused=18; FN=0;
	screening;	content ranged from	sens=100%; spec=99.98%; PPV=67.92%; NPV=100%;
	structural	38 to 42; After GC	FPR=0.02%; FNR=0%; SPR=0.08%
	abnormalities	correction, FF was	47,XXY+ n=113; TP=78, FP=35, refused=29; FN=0;
	reported by US	estimated by using	sens=100%; spec=99.96%; PPV=69.03%; NPV=100%;
	include cardiac	elastic net (ENET)	FPR=0.04%; FNR=0%; SPR=0.17%
	malformations,	algorithm	47,XYY+ n=18; TP=14, FP=4, refused=5; FN=0; sens=100%;
	cleft lip and		spec=100%; PPV=77.78%; NPV=100%; FPR=0%; FNR=0%;
	palate, fetal	Chr aneuploidy was	SPR=0.04%
	hydrops, limb	reported using the	46,XY(delX)+ n=25; TP=23, FP=168, refused=48; FN=3;
	malformations,	criteria of Z-score ≥3	sens=88.46%; spec-99.8%; PPV=12.04%; NPV=99.996%;
	cystic hygroma,	(trisomy) or \leq -3	FPR=0.2%; FNR=11.54%; SPR=0.29%
	renal dysplasia,	(monosomy). When	
	lung	different fetal	CNVs+ (<= 5Mb) n=12; TP=4, FP=8, refused=1; FN=16;
	cystadenomas	fractions were	sens=20%; spec-99.99%; PPV=33.33%; NPV=99.981%;
		reported by two	FPR=0.01%; FNR=80%; SPR=0.02%
	Participant	algorithms (ENET	
	characteristics	and chromosome Y-	

Study Information	Population	NIPS	Results
	General	based), mosaic	RATS+ n=44; TP=9, FP=35, refused=12; FN=1; sens=90%;
	population	chromosome	spec-99.96%; PPV=20.45%; NPV=99.999%; FPR=0.04%;
		aneuploidy was	FNR=10%; SPR=0.07%
		considered. The	Diagnostic Procedures: NR
		analytical algorithm	
		for CNVs was	Identification of maternal conditions: NR
		reported in previous	
		studies, with a	Psychosocial outcomes: NR
		resolution of 5 Mb.	
		~2500 lost to follow-	
		up	
Langlois et al., 2017	N = 1198	NIPS Platform	T21+ traditional screening n=68 TP=5; FP=63; TN=1096;
		HARMONY Prenatal	Detection rate=83% (36%-99%); FPR=5.4% (4.2%-6.9%)
Country Canada	Inclusion criteria	test; T21, T13, T18	
	≥19 yrs old,	only	T21+ NIPS: n=6; TP=6; FP=0; TN=1159; DR=100% (54%-
Timeframe November	singleton		100%); FPR=0% (0-0.3%)
2013 to June 2017	gestation,	NIPS description	
	recruited <14 wks	NR	0 cases of T18 or T13; NIPS+ T18 FP=1; NIPS+ T13 FP=1 FPR
Risk of Bias	gestation, have		for both T18 & T13 0.09% (0-0.48%)
ROBINS-I: Moderate	decided to	33 lost to follow-up	SCA: NR
	undertake the		ТР
Funding/potential COI	provincially		TN
The authors are	funded screening		FP
investigators in a	test and agreed		FN
Research Project funded	to have the NIPS		Other
under the auspices of	screening result		
Genome Canada and the	provided to them		CNV: NR
Canadian Institutes for	at the same time		ТР
Health Research (both	as the result of		TN

Study Information	Population	NIPS	Results
non for-profit	their standard		FP
organizations funded by	screen.		FN
the Canadian	Participants also		Other
government) but that	consented to a		
call for some mandatory	review of their		RAT: NR
in-kind contributions	and their		ТР
from other partners.	newborn's		TN
This funding is at arm's	medical records		FP
length from the	and/ or phone		FN
scientific component of	call at 6 wks		Other
the Research Project.	postpartum for		Diagnostic Procedures: total invasive diagnostic procedure
The funders had no role	details of invasive		rate was 2% (23/1165; 95% Cl, 1.3%-3%) but could have
in the design of the	testing, if done,		been as high as 6.8% (79/1165; 95% Cl, 5.4%-8.4%) based
study, interpretation of	course of their		on traditional screening and ultrasound examination
the results, or approval	pregnancy and		without NIPS analysis. The rate of invasive diagnostic
of the manuscript	outcome, as well		testing in the NIPS negative women was 1.2%
	as information		(14/1151;95% CI, 0.7%-2%)
	about the health		
	of their newborn		Identification of maternal conditions:
	and results of any		NR
	postnatal genetic		
	testing		Psychosocial outcomes: NR
	Exclusion criteria		
	NR		
	Participant		
	characteristics		
	low-risk pregnant		
	individuals		

Study Information	Population	NIPS	Results
	seeking publicly-		
	funded screening		
LeConte et al., 2018	N = 492	NIPS Platform	Overall: (n=420) NIPT+ n=6; TP=4; FP=2; TN=414
Country France &	Inclusion criteria	NIPS description	T21 : TP=3, FP=1; sens=100% (29.2-100%); spec=99.8%
Belgium	twin pregnancies	massively parallel	(98.7-100%)
	with no abnormal	sequencing using a	
Timeframe 1 November	fetal ultrasound	whole-genome	T18 : TP=1, FP=0
2013 to 31 August 2015	finding and with	approach; Z-scores	
	nuchal	were calculated for	T13 : TP=0, FP=1
Risk of Bias	translucency <3.5	the targeted	
ROBINS-I: Moderate	mm	chromosomes (13,	59 pts (12%) lost to follow-up & no karyotype for 13
		18 and 21) and	SCA: NR
Funding/potential COI	Exclusion criteria	classification was	
3 authors are employees	NR	based upon a	CNV: NR
of CERBA, in which they		standard normal	
are also shareholders	Participant	transformed cut-off	RAT: NR
	characteristics	value of Z=3 for	Diagnostic Procedures: NR
	Individuals w/	chromosome 21 and	
	twin pregnancy	Z=3.95 for	Identification of maternal conditions: NR
	undergoing	chromosomes 18	
	routine screening	and 13. Results are	Psychosocial outcomes: NR
		expressed as	
		positive or negative	
		when the metric	
		criteria (total count	
		of reads should be 9	
		million and the	
		estimated fetal DNA	
		fraction 8%) are	

Study Information	Population	NIPS	Results
		fulfilled and no-	
		result if they are not.	
		A theoretical value	
		of 8% was used	
		whatever the	
		chorionicity,	
		assuming that each	
		fetus contributes	
		adequate amounts	
		of DNA to the	
		maternal plasma to	
		ensure accurate	
		results, compared	
		with the 4% value	
		validated previously	
		for use in singleton	
		pregnancies	
Liang et al., 2018	N = 32431	NIPS Platform	T21 : TP n=115; FP n=10; TN n=25852; FN n=3; sens=97.45%
		NR	(92.79%-99.13%); spec=99.96% (99.93%-99.98%); PPV=92%
Country China	Inclusion criteria		(85.90%-95.60%); NPV=99.99% (99.97%-100%)
	≥12 weeks of	NIPS description	
Timeframe August 2011	gestation with a	Whole-genome	T18 : TP n=23; FP n=16; TN n=25941; FN n=0; sens=100%
to December 2016	singleton	massively parallel	(85.69%-100%); spec=99.94% (99.90-99.96%); PPV=58.97%
	pregnancy	shotgun sequencing	(43.42%-72.92%); NPV=100% (99.99%-100%)
Risk of Bias		was performed in all	
ROBINS-I: Moderate	Exclusion criteria	cases; Starting from	T13 : TP n=3; FP n=10; TN n=25967; FN n=0; sens=100%
	NR	2012, screening for	(43.85%-100%); spec=99.96% (99.93-99.98%); PPV=23.08%
Funding/potential COI		other genome-wide	(8.18%-50.26%); NPV=100% (99.99%-100%)
None	Participant	RATs and CNVs was	SCA: (Overall):
	characteristics	added to the aspect	
Study Information	Population	NIPS	Results
-------------------------	--------------------	----------------------	---
	mixed-risk	of screening as an	TP=28, FP=29; TN=NR; FN=NR, Sens=NR; Spec=NR;
	population of	additional service,	PPV=49.12% (36.62%-61.74%); NPV=NR
	pregnant	and women need to	
	individuals from	consent to this	CNV + n=37, validated n=21; TP=6; FP=15
	Eastern China	separately to the	
		common	RATs+ n=53, validated n=24; TP=3; FP=21
		aneuploidies.	
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Liang et al., 2019	N = 94085	NIPS Platform	965 NIPS-Plus positive results, there were 526 fetuses at
		In house using Berry	high risk for T21, T18, or T13
Country China	Inclusion criteria	Genomics kit;	
	singleton	sequencing on	T21 (n=364) was the most common, followed by T18
Timeframe November	pregnancy	Illumina NextSeq	(n=123) and T13 (n=39). Of these, there were 20
2015 to December 2017			pregnancies incorrectly scored as high risk (FPs) for T21, 22
	Exclusion criteria	NIPS description	for T18, and 21 for T13, yielding positive predictive values
Risk of Bias	NR	NIPS-PLUS	(PPVs) of 95%, 82%, and 46%, respectively
ROBINS-I: Moderate			
	Participant	Median FF: 10.8%	SCA: 390 NIPS+
Funding/potential COI	characteristics		45,X: NIPS+ n=190; FP=141; PPV=26%
7 authors are employees	the general		47,XXY: NIPS+ n=76; FP=13; PPV=83%
of Berry Genomics	population who		47,XXX: NIPS+ n=81; FP=31; PPV=62%
Corporation; 1 author	had naturally		47,XYY: NIPS+ n=24; FP=6; PPV=75%
holds stocks in the	conceived a		46,XY(Xdel): n=19; FP=17; PPV=11%
company	singleton		
	pregnancy		CNV : 120 P/LP fetal CNVs were followed up in validation
			studies: 32 cases of MMS associated with classical chr
	Median (range)		diseases. This comprised 14 cases at high risk of DGS, 6
	age (low-risk):		cases of 22q microduplication syndrome, 4 cases of PWS, 6

Study Information	Population	NIPS	Results
	29 (15-34) yrs		cases of CDC, and 2 cases of 1p36 del syndrome. DGC, 14
			suspected cases, 13TP, 1FP, PPV=93%; 6 cases 22q11.2
	Median (range)		microduplications 4TP 2FP PPV=67%; PWS 4 suspected
	GA: 17 ⁺³ (11-39)		cases, 3TP, 1FP PPV 75%; CDC 6 suspected cases 3TP 3FP
	wks		PPV 50%
			The remaining 88 of 120 fetal CNVs comprised genome- wide segmental CNVs that were classified as nonsyndromic MMS because no specific syndromes could be identified in any current databases as associated with these changes. Of these, there were 23 TPs and 49 FPs forCNVs, ≥10 Mb (PPV 32%) and 3 TPs and 13 FPs for CNVs <10 Mb (PPV 19%) (nonsyndromic).
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR Psychosocial outcomes: NR
Lin et al., 2020	N = 11175	NIPS Platform	T21: NR
Liii et di., 2020	$\mathbf{N} = 111/5$	In-house; BGI	1 21 : NR
Country China	Inclusion criteria have low risk	sequencer	T18 : FN, 1
Timeframe January	NIPS results to	NIPS description	T13 : NR
2017 to December 2017	assess False	Analysis was	SCA: NR
	negative rate	performed for all	
Risk of Bias		samples on	CNV & RATs : 3/10,975 FN for T18, RAT (12p) &
ROBINS-I: Serious	Exclusion criteria	aneuploidies of chr	microdeletions
	NR	13, 18, 21, X, and Y,	Diagnostic Procedures: NR
Funding/potential COI		as well as other	
None			Identification of maternal conditions: NR

Study Information	Population	NIPS	Results
	Participant	genome-wide RAT	
	characteristics	and sub-chr CNV.	Psychosocial outcomes: NR
	NIPS performed		
	at a single	Pregnancies with	
	hospital; low risk:	low-risk NIPS results	
	n=10975; benign	were recommended	
	pregnancy	for routine prenatal	
	outcomes:	care and	
	n=10310; loss to	interviewed by	
	follow-up: n=499;	telephone at 3	
	adverse	months after	
	pregnancy	delivery	
	outcome: n=166		
Lu et al., 2020	N = 37006	NIPS Platform	T21 : TP, n=116; FP, n=21 [15 from further dx testing]; TN,
	recruited. 93	NR	n=36488; FN; n=0
Country China	(0.25%) excluded.		sens=100%; spec=99.94%; FPR=0.06%; FNR=0%;
	36913 remained.	NIPS description	PPV=84.67%; NPV=100%
Timeframe January		NR	
2017 to December 2019	AMA n=9516		T18 : TP, n=27; FP, n=19 [16 from further dx testing]; TN,
	(high risk, 1118;		n=36579; FN; n=0
Risk of Bias	low risk, 8398)		sens=100%; spec=99.95%; FPR=0.05%; FNR=0%;
ROBINS-I: Moderate			PPV=58.70%; NPV=100%
	Normal age		
Funding/potential COI	n=27397 (high		T13 : TP, n=13; FP, n=18 [15 from further dx testing]; TN,
None	risk, 12575; low		n=36594; FN; n=0
	risk, 14822)		sens=100%; spec=99.95%; FPR=0.05%; FNR=0%;
			PPV=41.94%; NPV=100%
	Inclusion criteria		SCA (Overall): TP, n=51; FP, n=102 [53 from further dx
	Singleton		testing]; TN, n=36472; FN; n=0
	gestations, had		

Study Information	Population	NIPS	Results
	pretest		sens=100%; spec=99.72%; FPR=0.28%; FNR=0%;
	counseling		PPV=33.33%; NPV=100%
	Exclusion criteria NR		CNV: NR
			RAT: NR
	Participant characteristics		Diagnostic Procedures: NR
	Individuals from single center in		Identification of maternal conditions: NR
	China.		Psychosocial outcomes: NR
	Median (range) maternal age: 29 (18-54) yrs		
	Median (range) gestational age was 17 ⁺⁴ (12-32) wks		
	Repeat sample: n=306 (0.83%) 213 of them		
	obtained effective NIPS results		
Lu et al., 2021	N = 45773	NIPS Platform In-house	T21 : NR

Study Information	Population	NIPS	Results
Country China	Inclusion criteria		T18 : NR
	[1] gestational	NIPS description	
Timeframe June 1,	week between	NR	T13 : NR
2015, to June 30, 2019	12 ⁺⁰ -26 ⁺⁶ wks [2]		SCA (Overall): TP, n=58; FP, n=85; PPV, 40.56%
	singleton		range of PPV 30.23% in age <30 yrs to 71.43% in age >39 yrs
Risk of Bias	pregnancy		
ROBINS-I: Serious			CNV: NR
	Exclusion criteria		
Funding/potential COI	[1] gestational		RAT: NR
None	age <12 wks; [2]		Diagnostic Procedures: NR
	multifetal		
	pregnancies; [3]		Identification of maternal conditions: NR
	definite chr		
	abnormalities; [4]		Psychosocial outcomes: NR
	individuals who		
	underwent an		
	allogeneic blood		
	transfusion, stem		
	cell therapy,		
	transplant		
	surgery, or other		
	procedure; [5] a		
	family history of		
	genetic disease or		
	an indication for		
	a high risk of		
	genetic disease in		
	the fetus; [6]		
	individuals w/		
	malignant		

Study Information	Population	NIPS	Results
	tumors; and [7]		
	other conditions		
	that might affect		
	the accuracy of		
	the results.		
	Participant		
	characteristics		
	Mixed-risk		
	population ages		
	16 to 45 yrs		
Luo et al., 2020	N = 40311	NIPS Platform	T21 : NIPS+ n=145; TP=105; PPV=84%
		In-house; sequenced	
Country China	Inclusion criteria	at BGI	T18 : NIPS+ n=21; TP=13; PPV=48.15%
	≥12 weeks of		
Timeframe January	gestation with a	NIPS description	T13 : NIPS+ n=21; TP=4; PPV=14.29%
2011 to December 2018	singleton	NR	SCA: PPV 35.32%
	pregnancy		
Risk of Bias			CNV: NR
ROBINS-I: Moderate	Exclusion criteria		
_	multifetal		RAT : NIPS+ n=69 54 w/invasive testing.
Funding/potential COI	pregnancies, one		TP=5
None	of the parents w/		Diagnostic Procedures: NR
	chr		
	abnormalities,		Identification of maternal conditions: NR
	and individuals		
	who had received		Psychosocial outcomes: NR
	allogeneic blood		
	transfusion,		
	transplantation,		

Study Information	Population	NIPS	Results
	stem cell therapy		
	and		
	immunotherapy		
	w/in a year		
	Participant		
	characteristics		
Margiotti et al., 2020	N = 9985	NIPS Platform Ion S5 NGS (ThermoFisher	T21 : NR
Country Italy	Inclusion criteria	Scientific, Waltham, MA, USA)	T18 : NR
Timeframe January			T13 : NR
2018 to January 2020	Exclusion criteria	NIPS description	SCA : Total SCA+ n=31; validated n=22; TP=17, FP=5;
	NR	NR	PPV=77.3% (54.2%-91.3%); unconfirmed n=9
Risk of Bias			
ROBINS-I: Moderate	Participant		45,X+ n=19; validated n=13, TP=9, FP=4, PPV=69.2% (38.9%-
	characteristics		89.6%); unconfirmed n=6
Funding/potential COI	mixed-risk		
Multiple authors	population		47,XXX+ n=4; validated n=3, TP=3, FP=0; PPV=100% (31%-
employed by laboratory			100%), unconfirmed n=1
			47,XXY+ n=6; validated n=5, TP=4, FP=1, PPV=80% (29.9%- 98.9%), unconfirmed n=1
			47,XYY+ n=2; validated n=1; TP=1; FP=0; PPV=100% (5.5%- 100%); unconfirmed n=1
			CNV: NR
			RAT: NR
			Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Martin et al., 2018	N = 80449	NIPS platform	T21: NR
		Natera	T18: NR
Country United States	Inclusion criteria		T13: NR
	NR	NIPS description	SCA: NR
Timeframe February		Screened for panel	CNV: (revised algorithm)
2014-February 2015	Exclusion criteria	of microdeletion	22q11.2: w/ abnormal findings (known prior to NIPS): TP,
	test canceled,	syndromes (22q11.2	n=18; FP, n=0; PPV=100%; missing confirmation, n=6;
Risk of Bias	draw <9 weeks	deletion, 1p36, cri-	w/o abnormal findings or detected after NIPS: TP, n=5; FP,
ROBINS-I:	GA, insufficient	du-chat, Prader-	n=22; PPV=18.5%; missing confirmation: n=8
moderate/serious	blood volume,	Willi, Angelman	
	contamination,	microdeletions),	1p36: w/ abnormal findings (known prior to NIPS): TP, n=1;
Funding/potential COI	multiple	N=42,326; screened	FP, n=0; PPV=100%; missing confirmation, n=0;
Multiple authors are	gestations, and	for 22q11.2 deletion	w/o abnormal findings or detected after NIPS: TP, n=1; FP,
employees/paid	low fetal fraction	only, N=21,948	n=1; PPV=50%; missing confirmation: n=0
consultants of Natera;			
study was funded by	Participant		Cri-du-chat: w/ abnormal findings (known prior to NIPS):
Natera, Inc.	characteristics		TP, n=2; FP, n=0; PPV=100%; missing confirmation, n=0;
	Maternal age (yr),		w/o abnormal findings or detected after NIPS: TP, n=2; FP,
	mean (SD): 32.0		n=2; PPV=50%; missing confirmation: n=0
	(5.8)		
	Gestational age		Prader-Willi: w/ abnormal findings (known prior to NIPS),
	(wks), mean (SD):		none identified
	13.7 (4.1)		w/o abnormal findings or detected after NIPS: TP, n=0; FP,
	Maternal weight		n=1; PPV=0%; missing confirmation: n=3
	(lbs), mean (SD):		
	157.3 (38.3)		

Study Information	Population	NIPS	Results
	Fetal fraction (%),		Angelman: w/ abnormal findings (known prior to NIPS):
	mean (SD): 10.5		none identified
	(4.3)		w/o abnormal findings or detected after NIPS: TP, n=1; FP,
			n=9; PPV=10%; missing confirmation: n=7
			RAT: NR
			Diagnostic procedures: NR
			Identification of maternal conditions: 6 cases suspected
			based on fetal risk score of 50% for 22q11.2 deletion;
			follow-up available for 3 individuals; 2 with confirmed
			maternal 22q11.2 deletion, 1 with confirmed fetal deletion
			and unconfirmed maternal copy number for 22q11.2 region
			but with tetralogy of Fallot and learning disabilities
			(associated with 22q11.2 deletion syndrome)
			Psychosocial outcomes: NR
Martin et al., 2020	N = 194385	NIPS Platform	T21 : NR
	Group A:	Natera	T18 : NR
Country NR; assumed	Suspected		T13 : NR
United States	Maternal ChrX	NIPS description	SCA: 149 suspected maternal x chr abnormalities. Group A
	n=149;	NR	(suspected group 100/106 had anomalies 94.3% PPV).
Timeframe May 12 to	sequentially		45,X: NIPS+ n=58, TP mosaic or non-mosaic 38/58 (65.5%)
December12, 2018	enrolled to n=106		
			47,XXX: NIPS+ n=40; TP=38
Risk of Bias	Group B:		
ROBINS-I: Moderate	Suspected fetal		In Group B (n=107), no maternal CMA abnormalities
_	Chr: n=613;		reported, NPV= 100% (1-sided 97.5% CI, 96.6%-100.0%)
Funding/potential COI			

Study Information	Population	NIPS	Results
Multiple authors are	sequentially		CNV: NR
employees/paid	enrolled to n=107		
consultants of Natera;			RAT: NR
Natera, Inc contributed	Inclusion criteria		Other
to the design;	All tests unable to		Diagnostic Procedures: NR
participated in the	evaluate fetal risk		
collection, analysis, and	for aneuploidy		Identification of maternal conditions: NR
interpretation of data;	because of		
and collaborated on	uninformative		Psychosocial outcomes: NR
writing, reviewing, and	algorithm results		
approving the final	were eligible for		
version. This study was	inclusion. Group		
funded by Natera, Inc.	A (n=106) where		
	a maternal X chr		
	abnormality was		
	suspected and		
	Group B (control		
	group, n=107)		
	where a fetal chr		
	abnormality		
	involving chr 13,		
	18, 21, or X was		
	suspected but did		
	not meet criteria		
	for reporting; ≥ 9		
	wks gestation		
	and the FF \geq		
	2.8%.		
	Exclusion criteria		

Study Information	Population	NIPS	Results
	Multifetal		
	pregnancies and		
	pregnancies		
	involving egg		
	donors or		
	surrogates; Risk		
	assessment was		
	not performed if		
	the pregnancy		
	was known to		
	have been		
	complicated by a		
	vanishing twin or		
	a known		
	maternal history		
	of chr		
	abnormality or		
	malignancy		
	Participant		
	characteristics		
Motevasselian et al.,	N = 500 twin	NIPS Platform	combined T21/T18/T13 : NIPT+ n=7; TP=6; FP=1; combined
2020	pregnancies; 144	ion Torrent (Life	FPR=0.28%; combined sens=100%; combined spec=99.7%
	pregnancies	Technology)	SCA: NR
Country Iran	(28.8%) were		
	excluded	NIPS description	CNV: NR
Timeframe March 2016		NR	
and December 2018	Inclusion criteria		RAT: NR
			Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
Risk of Bias	referred to Nilou		
ROBINS-I: Serious	Clinical		Identification of maternal conditions: NR
	Laboratory		
Funding/potential COI			Psychosocial outcomes: NR
None	Exclusion criteria		
	No follow-up		
	(n=94, 18.8%); no		
	karyotype (n=22,		
	4.4%), IUFD of		
	both fetuses		
	(n=7, 1.4%);		
	selective		
	embryonic		
	reduction (n= 2,		
	0.4%); TOP due to		
	preterm labor		
	(n=11), PROM		
	(n=7), severe pre-		
	eclampsia (n=1)		
	Participant		
	characteristics		
	mixed risk		
	population of		
	twin pregnancies		
Noh et al., 2019	N = 817; 490	NIPS Platform	T21 : NR
	(60.0%) chose the	Green Cross	
Country South Korea	integrated test as	Genome NIPStest	T18 : NR
	their primary		
	serum screening	NIPS description	T13 : NR

Study Information	Population	NIPS	Results
Timeframe July 2016 to	method, 327	shotgun massively	SCA: NR
April 2018	(40.0%) chose	parallel sequencing	
	NIPS	(s-MPS) by	CNV: NR
Risk of Bias		Sequenom	
ROBINS-I: Moderate	Inclusion criteria	MaterniT21 PLUS,	RAT: NR
	singleton and	(Sequenom, Inc., San	Diagnostic Procedures: The mean number of amnio
Funding/potential COI	twin pregnancies	Diego, CA, USA)	performed at our institution prior to NIPS was 8.8/mo
None	undergoing		(8.8±4.8,r ange: 4-14).
	prenatal		Post-NIPS: decreased to 4.1/mo (4.1±2.3, range: 2-8); P <
	screening for		0.01
	fetal trisomy		
			Identification of maternal conditions: NR
	Exclusion criteria		
	NR		Psychosocial outcomes: NR
	Participant		
	characteristics		
	tertiary urban		
	academic medical		
	center in Seoul,		
	South Korea		
	(Samsung		
	Medical Center).		
Norwitz et al., 2019	N = 126	NIPS platform	T21 : (samples w/confirmation) MZ, n=1; DZ, n=4; no FP
	(overlapping	Natera	T18 : (samples w/confirmation) DZ, n=5; no FP
Country United States	cohorts for		T13 : (samples w/confirmation) DZ, n=1; no FP
with samples from	analysis)	NIPS description	SCA NR
multiple countries		SNP-based NIPS,	CNV NR
	Inclusion criteria	using an algorithm	RAT NR
		previously validated	Diagnostic procedures NR

Study Information	Population	NIPS	Results
Timeframe April 2013 –	Individuals ≥18	for singleton	Identification of maternal conditions NR
February 2017	yrs old) with	pregnancies, with	Psychosocial outcomes NR
	sonographically	modifications for	Other
Risk of Bias	confirmed twin	twin gestations	Zygosity: samples w/confirmation, MZ, correct calls 29/29;
ROBINS-I: Moderate	pregnancies.		DZ, correct calls 64/64
	Patients had to		
Funding/Potential COI	be 9 weeks		Fetal sex confirmation: MZ, correct calls 40/40 (20 males,
multiple authors	gestation or		20 females); DZ, correct calls 62/62 (2 males, n=20; 1 male,
were/are employed by,	greater. Subset		n=34, 0 males, n=8)
are on the advisory	(n=56) with at		
board of, and/or own	least 1 additional		
stock/stock options of	criterion:		
Natera	Confirmed		
	affected with		
	aneuploidy by		
	invasive testing,		
	non-invasive		
	prenatal test		
	(NIPT) "high-risk"		
	result, serum		
	screening risk of		
	greater than		
	1:100, or		
	observed		
	ultrasound		
	abnormalities		
	suggestive of		
	aneuploidy		
	Exclusion criteria		
	Exclusion chiefia		

Study Information	Population	NIPS	Results
	singleton		
	pregnancies or		
	the use of a		
	surrogate or egg		
	donor; samples		
	with multiple		
	aneuploidy		
	conditions		
	Participant		
	characteristics		
	Reported		
	separately for		
	each analysis:		
	Zygosity, n=95		
	MZ:DZ: 30:65		
	Maternal age,		
	mean (SD): 32.8		
	(5.2) yrs		
	Gestational age,		
	mean (SD): 15.4		
	(4.7) weeks		
	Fetal sex, n=103		
	MZ:DZ 40:63		
	Maternal age,		
	32.8 (5.3)		
	Gestational age,		
	15.4 (4.6)		

Study Information	Population	NIPS	Results
	Aneuploidy,		
	n=117		
	MZ:DZ 40:77		
	Maternal age,		
	33.0 (5.5)		
	Gestational age,		
	15.6 (4.8)		
Oneda et al., 2020	N = 3053 for	NIPS Platform	T21 : TP=28; FP=0; T21 + XXX, TP=1, FP=0
	prospective; 2998	In-house;	
Country Switzerland	with result	sequencing on	T18 : TP=26; FP=0
	(98.2%). 91 cases	NextSeq550 or	
Timeframe NR	for retrospective	HiSeq2500 (Illumina)	T13 : TP=8; FP=0
Risk of Bias	Inclusion criteria	NIPS description	Combined T21/T18/T13 prospective only:
ROBINS-I: Moderate	Prospective:	NR	Sens 100.00% (95% Cl 91.96-100)
	pregnant women		Spec 99.97% (95% Cl 99.81-100)
Funding/potential COI	after 9 weeks	confirmed fetal	PPV 97.78 (95% CI 86.11-99.68)
NR	gestation, who	trisomy ratio in	NPV: 100%
	opted to have	twins, the	Accuracy: 99.97% (95% CI 99.81-100)
	NIPT	percentage was	
		1.3% (4 in 301	SCA : MX, TP=9; FP=0; XXX, TP=3, FP=0; XYY, TP=1, FP=0;
	Retrospective:	fetuses)	XXY, TP=1, FP=0;
	pts w/results		Combined SCA prospective only:
	from invasive		Sens 100.00% (95% Cl 2.5-100)
	prenatal testing		Spec 99.93% (95% Cl 99.76-99.99)
	who agreed to		PPV 33.33 (95% CI 11.12-66.65)
	participate		NPV: 100%
			Accuracy: 99.93% (95% Cl 99.76-99.99)
	Exclusion criteria		
	NR		CNV: prospective only:

Study Information	Population	NIPS	Results
			Sens 75% (95% Cl 19.41-99.37)
	Participant		Spec 99.74% (95% Cl 99.46-99.89)
	characteristics		PPV 30% (95% CI 14.45-52.10)
	Prospective:		NPV: 99.96% (95% CI 99.80-99.99)
	Median (range)		Accuracy: 99.7% (95% CI 99.41-99.87)
	gestational age,		
	12 (9-28) wks		RAT: combined prospective only:
			Sens 100.00% (95% Cl 2.5-100)
	AMA, 35.2%		Spec 99.93% (95% Cl 99.76-99.99)
			PPV 33.33 (95% Cl 11.12-66.65)
	Retrospective:		NPV: 100%
	Median (range)		Accuracy: 99.97% (95% CI 99.73-99.99)
	gestational age,		
	14 (11-35) wks		Diagnostic Procedures: NR
			Identification of maternal conditions: 9 pts w/clinically
			relevant CNVs
			Psychosocial outcomes: NR
Panchalee et al., 2020	N = 8,659	NIPS Platform	T21 : Out of 63 calls for T21, confirmatory testing was done
	enrolled; 8572 w/	Natera	for 50 samples (79.4%). TP=47. FP = 3. PPV = 94%
Country Thailand	confirmed		
	singleton	NIPS description	overall (T21+T18+T13) calls are 96. Confirmatory testing
Timeframe October 1,	pregnancy. 8434	SNP-based	was done for 77samples (80.2%). TP=69. FP = 8. PPV =
2013 to May 31, 2018	w/conclusive		89.6%
	results		
Risk of Bias			T18 : 20 calls for T18, confirmatory testing was done for
ROBINS-I: Moderate	Inclusion criteria		15samples (75%). TP=15. FP = 0. PPV = 100%
	singleton		
Funding/potential COI	pregnancies, all		

Study Information	Population	NIPS	Results
Some authors w/tech	self-pay,		T13 : 13 calls for T13, confirmatory testing was done for
transfer agreements w/	gestational age		12samples (92.3%). TP=7. FP = 5. PPV = 58.3%
Natera Inc., USA and	>9 wks		
Bangkok Cytogenetics			SCA:
Center Co. Ltd.,	Exclusion criteria		45,X: 18 calls; testing in 12 (67%); TP=8; FP=4; PPV=66.7%
Thailand. Neither of	gestational age		(42.9-84.2); FN=0
them was involved with	<9 wks, multifetal		
analysis of data and	gestation, donor		10 calls for non-45,X SCA; 100% w/testing. TP=7. FP = 3.
preparation of the	egg pregnancy,		PPV = 70%
manuscript. Some	surrogate carrier,		
authors received travel	missing patient		CNV: NR
bursary from Bangkok	information or		RAT: NR
Cytogenetics Ltd. And	incomplete con-		Diagnostic Procedures: NR
Natera Inc. to actively	sent documents,		
participate in their	sample received		Identification of maternal conditions: NR
sponsored lecture	>6 days after		
events. The other	collection,		Psychosocial outcomes: NR
authors declare no	insufficient blood		
conflicts of interest	volume (<13 ml),		
	wrong collection		
	tube used, or if		
	the sample was		
	apparently		
	damaged, non-		
	Thai ethnicity		
	Participant		
	characteristics		

Study Information	Population	NIPS	Results
	Mean (SD)		
	gestational age:		
	13.2 (2.1) wks		
	Mean (SD) age:		
	35.0 (3.5)		
Pertile et al., 2017	N = Cohort 1:	NIPS Platform	T21 : NR
	72,932 subjects;	Illumina	
Country United States;	Cohort 2: 16,885		T18 : NR
Australia		NIPS description	
	Inclusion criteria	WGS cfDNA	T13 : NR
Timeframe	gestational age at	w/bioinformatics	SCA: NR
Cohort 1: October 2013	time of sampling	algorithms to detect	
to September 2014	was greater than	anomalies from all	CNV: NR
Cohort 2: April 2015 to	or equal to 10	chromosomes;	
August 2016	weeks; (ii) a value	cohort 1 data from	RAT: NIPS+ 246 of 518 flagged samples (Cohort 1: 47.5%)
	for the NCDQ	Illumina, cohort 2	60/109 flagged samples (Cohort 2: 55.0%). Of 52 single
Risk of Bias	parameter was	data from Victorian	RATs with outcome data, 22 samples (42%) were associated
ROBINS-I: Serious	available; (iii)	Clinical Genetics	with an early or missed miscarriage (<11 to 12 weeks of
	blood samples	Services; flagged	gestation). Miscarriage was reported in 13 of 14 samples
Funding/potential COI	had been drawn	samples if	(93%) with trisomy15 and in 3 of 5 samples (60%) with
NR	into nonexpired	normalized	trisomy 22. Single cases of trisomies 9, 10, 14, and 20 and
	Streck DNA Blood	chromosome	two cases of trisomy 16 were also recorded as miscarriages.
	Collection Tubes	denominator quality	Another case of trisomy 9 was associated with a co-twin
	(BCT) and had	<50	demise at 9 weeks of gestation. Cytogenetic investigation
	arrived at the		on products of conception (POC) was carried out in five
	laboratory within		miscarriage samples. In each case, the RAT was confirmed
	the time frame		by using SNP microarrays: three cases of trisomy 15
	required for		(placental villi), one case of TFM for trisomy 22 (fetal skin),
	analysis and with		and one case of non-mosaic trisomy 9 (fetal skin) in a

Study Information	Population	NIPS	Results
	sufficient volume		pregnancy that was terminated after multiple fetal
	for testing; and		anomalies were observed on ultrasound examination.
	(iv) if multiple		There were 17 pregnancies involving single RATs that
	test samples at		proceeded to amniocentesis.
	different		
	gestational ages		Normal amniocentesis results were obtained in seven
	were received		pregnancies (13%) for single samples associated with
	from the same		trisomies 2, 7, 9, 16, and 22and for two cases of trisomy 10.
	pregnancy, only		These pregnancies proceeded to phenotypically normal live
	one blood sample		births, except for the case with trisomy 9, which was
	was selected for		associated with IUGR and cleft palate at birth.
	study		Diagnostic Procedures: NR
	Exclusion criteria		Identification of maternal conditions: NR
	(i) a gestational		
	age of less than		Psychosocial outcomes: NR
	10 weeks, (ii)		
	inadequate blood		
	volume, and (iii)		
	blood collected		
	into tubes other		
	than Streck DNA		
	BCT		
	Participant		
	characteristics		
	Mean (SD) age:		
	Cohort 1, no flag		
	34.6 (5.4) vs flag		
	35.1 (5.8); Cohort		

Study Information	Population	NIPS	Results
	2, no flag 34.4		
	(4.3) vs flag 35.6		
	(4.9); ages		
	significant w/in &		
	between groups		
	Mean (SD) GA:		
	Cohort 1, no flag		
	13.8 (4.2) wks vs		
	flag 13.9 (4.4)		
	wks; Cohort 2, no		
	flag 11.0 (1.9)		
	wks vs flag 11.2		
	(2.6) wks; GA		
	significant		
	between groups		
Pescia et al., 2017	N = 6388	NIPS Platform	T21 : NR
		Illumina HighSeq	T18 : NR
Country Switzerland	Inclusion criteria	2000	T13 : NR
	NR		SCA: NR
Timeframe March 2013-		NIPS description	CNV: NR
May 2015	Exclusion criteria	Shotgun sequencing	
	transportation		
Risk of Bias	time >48h, total		50/6388 samples RATs (0.78%); T7, n=16; associated
ROBINS-I: Moderate	DNA		w/UPD. The group with a high or very high risk for an
Funding (not ontial CO)	concentrations		unfavorable outcome if the fetus were affected comprised
Funding/potential COI	≤4ng/ul, and		seven cases (14%).
Some authors are	visible hemolysis		
minority shareholders of	(degree defined		
Sonic Healthcare, which			

Study Information	Population	NIPS	Results
owns Aurigen, Fasteris,	by photographic		T6, T7, T14, T15, and T16, were considered abnormal or
and Genesupport	references).		likely abnormal because UPD can be symptomatic even in
			diploid fetuses after trisomy or monosomy rescue.
	Participant		
	characteristics		All other trisomies were rated abnormal or likely abnormal
	Mean (SD) GA:		based on the relative evidence for further workup. Follow-
	13.19 (2.36) wks		up with amnio in 19/50 (38%): 100% (3/3) for T22, 50%
			(2/4) for T16, and 37.5% (6/16) for T7, which included
	Low-risk: 28%		routine molecular UPD analysis in addition to karyotyping.
			Four fetal aneuploidies were confirmed; all three T22
			mosaicism cases were fetal, as was one case of T12
			mosaicism. For all remaining cases, amnio revealed normal
			diploid results; in the cases with potential UPD, no single
			fetal UPD was identified. This resulted in a nominal FPR of
			0.71% and a low PPV of 8%
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Petersen et al., 2017	N = 712	NIPS Platform	T21 NIPS+ n=268 TP= 228., PPV =85%. FPR =15%
		Multiple (Ariosa	
Country United States	Inclusion criteria	Diagnostics, BGI,	T18 NIPS+ n=106. TP= 82., PPV =77%. FPR =23%
	previous positive	Natera, Sequenom,	
Timeframe	from Initial NIPS	and Illumina)	T13 NIPS+ n=76. TP= 34., PPV =45%. FPR =55%
April 2012 to June 2017			
	Exclusion criteria	NIPS description	SCA:
Risk of Bias	NR	Follow-up at Baylor	XXY NIPS+ n=20. TP= 17, PPV =85%, FPR =15%
ROBINS-I: Serious		Genetics	XXX NIPS+ n=11. TP= 5., PPV =45%. FPR = 55%
	Participant		XYY NIPS+ n=4. TP= 4.
Funding/potential COI	characteristics		

Study Information	Population	NIPS	Results
Six authors affiliated	NR		CNV: NR
w/Baylor Genetics			
			RAT: NIPS+ n=12 monosomies 13 and 18 and T7, T9, T14,
			and T16. None of the 5 NIPS screen-positive monosomy (13
			and 18) cases were confirmed, and only T16 was confirmed
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Qi et al., 2019	N = 35/31,250	NIPS Platform	T21 : NR
		JingXin	T18 : NR
Country China	Inclusion criteria		T13 : NR
	consecutive pts	NIPS description	SCA: NR
Timeframe April 2015 to	w/abnormal NIPS	Reported in previous	CNV: NR
November 2017	results	paper	
			RAT : chr 7 aneuploidies were suspected from NIPS results
Risk of Bias	Exclusion criteria		in 0.11% of patients (35/31,250). In 20/20 amnios, normal
ROBINS-I: Serious			result (suggests CPM) however 2 of these had a CNV
	Participant		involving chromosome 7.9/10 CVS showed placental
Funding/potential COI	characteristics		chimerism. (some patients had both amnio and CVS)
None	Mean GA: 20 ⁺⁴		
	wks		Diagnostic Procedures: 25/35 chose invasive testing
			following suspected chr 7 abnormality
	Mean age: 30.8		
	yrs		Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Rousseau et al., 2019	N = 1660 baseline	NIPS Platform	T21 : ThermoFisher: TP=5, FP=3, TN=1558, FN=0;
	risk	Illumina and	FPR=3/1561 (0.19% (0.04%-0.56%)); spec: 1558/1561
Country Canada		ThermoFisher	(99.8% (99%-100%))
	Inclusion criteria		

Study Information	Population	NIPS	Results
Timeframe November	Age ≥19 yrs; GA	NIPS description	Illumina: TP=5, FP=0, TN=1581, FN=0; FPR=0/1581 (0% (0%-
2013 – April 2016	10-13 ⁺⁶ wks	Illumina: Optical-	0.23%)); spec=1581/1581 (100% (99%-100%))
	undergoing	based	
Risk of Bias	screening for	ThermoFisher:	T18 : ThermoFisher: TP=0, FP=3, TN=1563, FN=0;
ROBINS-I: Moderate	Down syndrome	semiconductor	FPR=3/1566 (0.19% (0.04%-0.56%)); spec: 1563/1566 (99.8% (99%-100%))
Funding/potential COI	Exclusion criteria	randomly removed	
None	multifetal	329 euploid samples	Illumina: TP=0, FP=3, TN=1583, FN=0; FPR=3/1586 (0.19%
	pregnancy, twin demise	before testing and an additional 61	(0.04%-0.55%)); spec=1583/1586 (99.8% (99%-100%))
	(spontaneous or	were lost to follow-	T13 : ThermoFisher: TP=0, FP=4, TN=1562, FN=0;
	elective), or	up; 27 had	FPR=4/1566 (0.26% (0.07%-0.65%)); spec: 1562/1566
	history of	insufficient samples	(99.7% (99%-100%))
	malignancy	or did not meet	
		inclusion criteria	Illumina: TP=0, FP=4, TN=1582, FN=0; FPR=4/1586 (0.25%
	Participant		(0.07%-0.64%)); spec=1582/1586 (99.7% (99%-100%))
	characteristics		
	(Baseline risk		SCA : 45,X ThermoFisher: TP=1, FP=11, TN=1554, FN=0;
	only):		FPR=11/1565 (0.70% (0.35%-2%)); spec: 1554/1565 (99.2%
	Mean (SD) age:		(98%-100%))
	32.9 (4.5) yrs		
			45,X Illumina: TP=1, FP=6, TN=1579, FN=0; FPR=6/1585
	Mean (SD) GA:		(0.38% (0.14%-0.82%)); spec=1579/1585 (99.6% (99%-
	12.2 (1.0) wks		100%))
			CNV: NR
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR

Study Information	Population	NIPS	Results
Sanchez-Duran et al.,	N = 2639	NIPS Platform	T21 : TP=3; FP=0
2019		Ariosa Diagnostics	T18 : TP=0; FP=0
	Inclusion criteria		T13 : TP=0; FP=0
Country Spain	Singleton	NIPS description	
	gestations w/a	NR	SCA: NR
Timeframe February	known outcome.		CNV: NR
2016-March 2017	Intermediate risk		RAT: NR
	defined as 1:11 to		Diagnostic Procedures: NR
Risk of Bias	1:1500 by FTS or		Identification of maternal conditions: NR
ROBINS-I: Serious	QUAD		Psychosocial outcomes: NR
Funding/potential COI	Exclusion criteria		Results of survey about testing preferences: results showed
None	vanishing twin		that 374 (81.8%) women would have preferred cfDNA
	pregnancy and		testing as the second line contingent test, 80 (17.5%) would
	unknown		have preferred an invasive procedure, and 3 (0.7%) women
	karyotype or		not doing anything
	unknown neonatal		
	phenotype		
	Participant		
	characteristics		
	Median (IQR)		
	age: 32.1 (28.1-		
	36.0) yrs		
	Median (IQR) GA:		
	13.2 (12-5-14.1)		
	wks		
Sandow et al., 2020	N = 47219	NIPS Platform	T21: NR

Study Information	Population	NIPS	Results
		Multiple	T18: NR
Country Australia	Inclusion criteria		T13: NR
	NIPS as 1 st or 2 nd	NIPS description	
Timeframe March 2013	tier screening;	Mix of whole-	SCA: NIPS+ n=107; 9 declined testing, 2 lost to follow-up
to December 2018	confirmed GA	genome, targeted,	TP=25; FP=71; PPV<30%
	≥10 wks	and CMA-based	
Risk of Bias		platforms; FF	CNV: NR
ROBINS-I: Moderate	Exclusion criteria	assessed using two	RAT: NR
	Multifetal	different methods	Diagnostic Procedures: NR
Funding/potential COI	gestations		Identification of maternal conditions: NR
None		Mean (SD) FF: 9.4	Psychosocial outcomes: NR
	Participant	(4.2)%	
	characteristics		
	Mean (SD) age:		
	36.4 (4.6) yrs		
	Mean (SD) BMI:		
	24.2 (3.5)		
	Median (IQR) GA:		
	11.0 (10.4-11.7)		
Schwartz et al., 2018	N = 349	NIPS Platform	T21: NR
		Multiple	T18: NR
Country United States	Inclusion criteria		T13: NR
	screened positive	NIPS description	SCA: NR
Timeframe 2014-2016	by NIPS for a CNV	NR	
	involving 1p,		CNV:
Risk of Bias	4p,5p, 15q, or		PPV=9.2%; when a CNV was confirmed, 39.3% of samples
ROBINS-I: Serious	22q; underwent		had additional abnormal CMA findings; unrelated abnormal

Study Information	Population	NIPS	Results
Funding/potential COI	diagnostic studies		CMA findings in 11.8% of pts w/an unconfirmed CNV;
Multiple authors work	by CVS or amnio		stretches of homozygosity associated w/FP NIPS result
for testing companies or			
are members of advisory	Exclusion criteria		RAT: NR
boards/speakers/receive	NR		Diagnostic Procedures: NR
honorarium and/or			Identification of maternal conditions: NR
research support	Participant		Psychosocial outcomes: NR
	characteristics		
	NR		
Scott et al., 2018	N = 23,388	NIPS Platform	T21: NR
		In-house;	T18: NR
Country Australia	Inclusion criteria	sequencing on	T13: NR
	Singleton	Illumina NextSeq	SCA: NR
Timeframe March 2015	gestation, no		CNV: NR
to August 2017	obvious	NIPS description	
	anomalies, ≥10	SAFeR algorithms	RAT : 28 RAT cases identified: T2, n=1; T3, n=1; T4, n=3; T5,
Risk of Bias	wks GA	calculating	n=1; T7, n=6; T8, n=2; T9, n=1; T10, n=1; T14, n=2; T15, n=2;
ROBINS-I: Moderate		normalized	T16, n=4; T20, n=1; T22, n=3. Of the 28RAT cases, six
	Exclusion criteria	chromosome values	miscarried, half due to anomalies in chromosome 22 (all
Funding/potential COI	GA <10 wks,	(NCVs) for	three trisomy, 22 cases). Two cases had true fetal
NR	insufficient	chromosomes 13,	mosaicism (TFM) confirmed on amniocentesis, of which
	sample volume,	18, 21, X and Y.	one also had structural anomalies and the other had both
	>5 days between	Chromosome	trisomy and UPD 15 on amniocentesis but no structural
	sample collection	coverage value	anomalies seen on ultrasound. One case with mosaic
	& lab receipt,	(CCV) analysis is also	trisomy 10 on CVS and structural abnormalities seen on
	detection of fetal	calculated for the 22	ultrasound had a likely, but unproven, fetal mosaicism.
	abnormality	autosomes	Termination of pregnancy occurred in four cases (the two
			TFM cases, the trisomy 10 case, and one trisomy 7 case,
	Participant		which had structural abnormalities despite a normal
	characteristics		amniocentesis).

Study Information	Population	NIPS	Results
	Mean (range)		
	age: 35.5 (27-43)		Diagnostic Procedures: NR
	yrs		Identification of maternal conditions: NR
			Psychosocial outcomes: NR
	93% samples		
	collected in 1 st -		
	trimester		
Serapinas et al., 2020	N = 862 cases;	NIPS Platform	T21 : n=15; confirmatory test, n=13; FP=0, PPV=100%
	after excluding,	Natera Panorama	T18 : n=10; confirmatory test n=9; FP=0, PPV=100%
Country Lithuania	n=850 [low risk		T13 : NR
	n=808, high risk	NIPS description	
Timeframe 2014-2019	n=15, no call	SNP-based, NATUS	SCA : 45,X+ n=1 (confirmed); FP=0, PPV=100%
	n=27]	algorithm analysis	XYY+ n=1 (confirmed); FP=0, PPV=100%
Risk of Bias			
ROBINS-I: Moderate	Inclusion criteria		CNV: NR
	singleton		RAT: NR
Funding/potential COI	pregnancy and in		Diagnostic Procedures: NR
None	three groups: (1)		Identification of maternal conditions: NR
	aged ≥35 yrs; (2)		Psychosocial outcomes: NR
	with a high risk		
	identified after		
	the FTS (3) no		
	increased risk		
	Exclusion criteria		
	multifetal		
	gestation; GA \geq 21		
	wks		
	WKS		

Study Information	Population	NIPS	Results
	Participant		
	characteristics		
	Group 1: mean		
	(range) age 37.7		
	(35-49) yrs		
	Group 2: mean		
	(range) age 34.1		
	(23-42) yrs		
	Group 3: mean		
	(range) age 28.5		
	(19-32) yrs		
	Median (range)		
	GA: all: 11 (9-21)		
	wks		
Snyder et al., 2016	N = 138; 67 had	NIPS Platform	Combined results:
	neonatal	Illumina 124erify	single autosomal monosomy, n=65; single autosomal
Country United States	karyotypes		trisomy w/SCA, n=36; multiple aneuploidies, n=37
T:	available	NIPS description	
Timeframe February	Inclusion criteria	Whole-genome	79 cases w/clinical outcomes:
2012-August 2014	subset of		M13/M18/M21: 1 partially concordant result, 3 discordant results
Risk of Bias	singleton samples		Single trisomy + SCA:
ROBINS-I: Serious	w/NIPS results of		T13+SCA/T18+SCA/T21+SCA: 1 fully concordant, 8 partially
NODINS-1. SETIOUS	single autosomal		concordant, 2 discordant
Funding/potential COI	monosomy or		
Authors are employees	multiple		Multiple aneuploidies: 3 fully concordant, 13 partially
of commercial lab	aneuploidies.		concordant, 42 discordant
	Included six		
	previously		Diagnostic Procedures: NR

Study Information	Population	NIPS	Results
	published cases		
	originating from		Identification of maternal conditions: 6/79 cases
	pregnancies w/an		malignancy
	occult maternal		
	malignancy		Psychosocial outcomes: NR
	Exclusion criteria		
	NR		
	Participant		
	characteristics		
	NR		
Srebniak et al., 2020	N = 8608	NIPS Platform	T21/T18/T13: substantial increase in diagnostic yield over
		NR	time
Country The	Inclusion criteria		SCA: NR
Netherlands	pregnancies	NIPS description	CNV: NR
	w/out fetal	NR	RAT: NR
Timeframe 2009-2018	ultrasound		
	anomalies at the		Diagnostic Procedures: substantial decrease of the number
Risk of Bias	time of sampling,		of diagnostic tests in pts w/out fetal US anomalies:
ROBINS-I: Serious	that were		2009: n=1176 (AMA or abnormal ftCT),
	referred for		2015: n=846 (no AMA needed, NIPS as 2 nd tier)
Funding/potential COI	diagnostic CMA		2018: n=363 (NIPS as 1 st tier)
None	due to AMA,		
	abnormal ftCT		Identification of maternal conditions: NR
	(with NT <3.5		Psychosocial outcomes: NR
	mm), recurrence		
	risk for		
	chromosome		
	aberrations or		

Study Information	Population	NIPS	Results
	abnormal NIPS		
	results		
	Exclusion criteria		
	Fetuses tested		
	due to the		
	presence of a		
	chromosome		
	aberration in one		
	of the parents		
	were excluded		
	from the analysis,		
	as the results		
	were dependent		
	on chromosome		
	segregation and		
	type of		
	aberration and		
	not on a selection		
	based on		
	screening or US;		
	samples detected		
	elsewhere but		
	confirmed by lab		
	Participant		
	characteristics		
	NR		
Tekesin et al., 2021	N = 81 w/NIPS+;	NIPS Platform	T21: NIPT+ n=40; confirmed + n= 38. Confirmed neg. n= 2.
	73		PPV = 95% (83.1-99.4%); FPR=5.0% (0.1-16.9%)

Study Information	Population	NIPS	Results
Country Germany	w/confirmatory	Harmony (Roche);	
	testing	PrenaTest (Eurofins	T18: NIPT+ n=9 confirmed + n= 5. Confirmed neg. n= 4. PPV
Timeframe 09/2013 to		Lifecodexx AG,	= 55.6% (21.2-86.3%); FPR = 44.4% (13.7-78.8%)
12/2019	Inclusion criteria	Germany);	
	NIPS+ results for	PreviaTest (Eluthia	T13: NIPT+ n= 7 confirmed + n= 2. Confirmed neg. n= 5. PPV
Risk of Bias	autosomal	GmbH, Germany)	= 28.6% (3.7-71.0%); FPR=76.9 % (46.2-95.0%)
ROBINS-I: Serious	aneuploidies		
	(T21, T18, T13),	NIPS description	SCA: Overall: NIPT+ n=13; confirmed + n=3, confirmed neg.
Funding/potential COI	SCAs (X0, XXX,	NR	n=10; PPV=23.1% (5.5-57.2); FPR=76.9% (46.2-95.0%)
None	XXY, XYY) or a		
	22q11.2		X0: NIPT+ n=5; confirmed + n=1; dx neg n=4; PPV=20%;
	microdeletion		FPR=80%
	(DiGeorge		
	syndrome)		XXX: NIPT+ n=5; confirmed + n=1; dx neg n=4; PPV=20%;
			FPR=80%
	Exclusion criteria		
	No confirmatory		XXY: NIPT+ n=1; confirmed + n=1; PPV=100%
	testing		
			CNV: DiGeorge syndrome: NIPT+ n=5; dx neg n=5;
	Participant		FPR=100% (7.8-100%)
	characteristics		
	Median (range)		RAT: NR
	age: 37 (22-44)		Diagnostic Procedures: NR
	yrs		Identification of maternal conditions: NR
			Psychosocial outcomes: NR
	Median (range)		
	GA: 13.6 (11.6-		
	26.6) wks		
Van Den Bogaert et al.,	N = 183621	NIPS platform	T21 (n=494): unconfirmed, n=100; sens 98.91% (95% Cl
2021		VeriSeq NIPT v2 or	97.24-99.58); spec, 99.98% (95% CI 99.97-99.99); PPV,

Study Information	Population	NIPS	Results
	Inclusion criteria	other Illumina	92.39% (95% CI 89.34-94.61); NPV, 100% (95% CI 99.99-
Country Belgium	NR	sequencer; lon	100.00); 3/5 FPs were confirmed CPM; FN, n=4
		Proton system	T18 (n=115): unconfirmed, n=24; sens 97.47% (95% Cl
Timeframe July 2017-	Exclusion criteria		91.23-99.30); spec, 99.99% (95% CI 99.98-99.99); PPV,
June 2019	higher-order		84.62% (95% CI 75.82-90.61); NPV, 100% (95% CI 100.00-
	(e.g., triplets)	NIPS description	100.00); of 1/3 FPs were confirmed CPM; FN, n=2
Risk of Bias	pregnancies	Next-generation	T13 (n=91): unconfirmed, n=9; sens 100.00% (95% CI 90.36-
ROBINS-I: Moderate		sequencing was	100.00); spec, 99.97% (95% CI 99.96-99.98); PPV, 43.90%
	Participant	performed with	(95% CI 33.67-54.68); NPV, 100% (95% CI 100.00-100.00);
Funding/Potential COI:	characteristics	either the Ion Proton	8/16 FPs were CPM
none	NR	system	
		(ThermoFisher	SCA NR
		scientific) or the	
		VeriSeq NIPT v2	CNV (n=109) NIPS suggested possible fetal segmental
		solution, HiSeq1500,	imbalance; unconfirmed, n=17
		HiSeq2500,	RAT (n=339; rare autosomal monosomy, n=11):
		HiSeq3000,	unconfirmed RAT, n=73; confirmed: n=11 (Trisomy 2, n=1;
		HiSeq4000,	Trisomy 8, n=3; Trisomy 9, n=1; Trisomy 16, n=4; Trisomy
		Novaseq6000,	22, n=2); 28/51 FPs were confirmed CPM
		NextSeq500 or	Unconfirmed rare autosomal monosomy, n=11
		NextSeq550	UPD testing (n=64 pregnancies): confirmed, n=3 (trisomy 7,
		sequencer	n=1; trisomy 15, n=2)
		(Illumina). Genome-	
		wide genomic	Diagnostic procedures: 2013, n=6,279; 2018, n=3,047;
		representation	normalized to number of live births represents a 52%
		profiling and	reduction in invasive tests; reduction in number of
		interpretation was	diagnostic tests is larger than the incidence of trisomy 21
		performed using the	
		VeriSeq NIPT Assay	Identification of maternal conditions reported maternal
		Control Software	imbalances: 0.32%; maternal cancers: 0.008%

Study Information	Population	NIPS	Results
		v2.0.0 (Illumina) or	
		as previously	Psychosocial outcomes NR
		described.	
			Other : incidence of trisomy 21 live births: 2014, 77 births;
			2018, 52 births
Van der Meij et al.,	N = 73239	NIPS Platform	T21+ (n=239): IUFD n=14; TOP n=2; cases w/confirmatory
2019		Multiple sites; NR	dx testing TP=214 FP=9; FN=5; sens=98% (95-99%);
	Inclusion criteria		PPV=96% (93-98%)
Country The	Pts who elected	NIPS description	
Netherlands	to have NIPS	performed with	T18+ (n=49): IUFD n=0; TOP n=0; cases w/confirmatory dx
	performed as a	either the Illumina	testing TP=48 FP=1 FN=5; sens=91% (79-97%); PPV=98%
Timeframe April 1, 2017	1 st -tier test; have	HiSeq4000 or the	(87-100%)
to April 1, 2018	a Dutch social	NextSeq500	
	security number	sequencer	T13+ (n=55): IUFD n=3; TOP n=1; cases w/confirmatory dx
Risk of Bias	and Dutch health	(Illumina);	testing TP=27 FP=24; FN=0; sens=100% (87-100%);
ROBINS-I: Moderate	insurance and	test failure: n=1127;	PPV=53% (43-63%)
	needed to be	1020 were repeated,	
Funding/potential COI	able to provide	86% resulted in	SCA: NR
None	informed consent	conclusive result	CNV: NR
	Exclusion criteria		RAT s+ (n=101): IUFD n=0; TOP n=1; cases w/confirmatory
	pregnancies w/a		dx testing TP=6; FP=91; PPV=6%
	vanishing or		
	dichorionic twin,		Diagnostic Procedures: NR
	fetal US		Identification of maternal conditions: NR
	anomalies incl. a		Psychosocial outcomes: NR
	NT of ≥3.5 mm,		
	or GA <11 ⁺⁰ wks.		
	Pts < 18 yrs or		
	couples known to		

Study Information	Population	NIPS	Results
	carry a(balanced)		
	chromosomal		
	abnormality; pts		
	w/a current		
	malignancy; who,		
	in the past three		
	months, had		
	received blood		
	transfusions,		
	stem cell therapy,		
	or		
	immunotherapy		
	to treat a		
	malignancy; or		
	who had an		
	organ trans-		
	plantation; at		
	high risk for the		
	common		
	trisomies, based		
	on FCTR 1/200 or		
	medical history,		
	but not on AMA		
	alone, were		
	enrolled in the		
	TRIDENT-1 study		
	and excluded		
	from this paper		

Study Information	Population	NIPS	Results
	Participant		
	characteristics		
	Mean (range)		
	age: 31.7 (18-52)		
	yrs		
	Mean (range) GA:		
	11.9 (11-41) wks		
Wan et al., 2018	N = 15362	NIPS Platform	T21 : NR
		In-house	T18: NR
Country China	Inclusion criteria		T13: NR
	NR	NIPS description	SCA: NR
Timeframe		Whole genome	CNV: NR
February 2015 to	Exclusion criteria	sequencing by Ion	
January 2018	NR; pretest US to	Proton	RAT: screening positive rate for RAT is 0.38% (59/15362).
	determine fetal	semiconductor (Life	Invasive prenatal diagnosis was performed in 61% (36/59)
	number, GA, and	Technologies)	of the cases. A majority of the RATs detected by NIPS
Risk of Bias	to exclude major		(94.9%, 56/59) were false positive, probably resulting from
ROBINS-I: Moderate	structural		CPM
_	abnormalities		
Funding/potential COI			Diagnostic Procedures: NR
None	Participant		Identification of maternal conditions: NR
	characteristics		Psychosocial outcomes: NR
	Mean (range)		
	age: 33 (19-45)		
	yrs		
	Mean (range) GA:		
	15 (12-24) wks		
Wu et al., 2020	N = 551	NIPS Platform	T21: NIPT+ n=150, TP=122, PPV=81.3%
Study Information	Population	NIPS	Results
------------------------	---------------------------	-----------------------	---
		Multiple (NextSeq	T21 YMA/no indication: NIPT+ n=32, TP=23, PPV=71.9%
Country China	Inclusion criteria	CN500; NextSeq	
	Pts w/NIPS+	AR550; BGI Seq500;	T18: NIPT+ n=52, TP=18, PPV=34.6%
Timeframe May 2015 to	results	Ion Proton)	T18 YMA/no indication: NIPT+ n=17, TP=0, PPV=0%
December 2019			
	Exclusion criteria	NIPS description	T13: NIPT+ n=36, TP=9, PPV=25%
Risk of Bias	Twin gestations	NR; most cases used	T13 YMA/no indication: NIPT+ n=12, TP=2, PPV=16.7%
ROBINS-I: Moderate		NextSeq CN500	
	Participant		SCA: NIPT+ n=258, TP=97, PPV=37.6%
Funding/potential COI	characteristics		SCA YMA/no indication: NIPT+ n=122, TP=49, PPV=40.2%
None	Mean (SD) GA:		
	16.6 (2.9) wks		CNV: NR
			RAT: NR
	AMA, 41.0%		Diagnostic Procedures: NR
	No indications,		Identification of maternal conditions: NR
	39.6%		Psychosocial outcomes: NR
Xu et al., 2020	N = 31515	NIPS Platform	T21: Detection rate (low-risk only): 17/6093 (0.28%)
		NextSeq CN500	Overall:
Country China	Inclusion criteria	sequencer (Berry	TP=95; FP=18; FPR=0.06%; TN=31274; FN=1; FNR=1.04%;
	Pts undergoing	Genomics	sens=98.96%; spec=99.94%; PPV-84.07%; NPV=99.997%
Timeframe June 2012 to	NIPS	Corporation, Beijing,	
May 2017		China);	T18: Detection rate (low-risk only): 8/6093 (0.13%)
	Exclusion criteria		Overall:
Risk of Bias	Twin gestations	NIPS description	TP=25; FP=11; FPR=0.03%; TN=31352; FN=0; FNR=0%;
ROBINS-I: Serious		Whole-genome;	sens=100%; spec=99.96%; PPV=69.44%; NPV=100%
	Participant	analysis w/Bambni	
Funding/potential COI	characteristics	system	T13: Detection rate (low-risk only): 3/6093 (0.05%)
None			Overall:
			TP=7; FP=8; FPR=0.03%; TN=31373; FN=0; FNR=0;
			sens=100%; spec=99.97%; PPV=46.67%; NPV=100%

Study Information	Population	NIPS	Results
			SCA: Detection rate (low-risk only): 44/6093 (0.72%)
			Overall:
			TP=61; FP=82; FPR=0.26%; TN=31245; FN=0; FNR=0;
			sens=100%; spec=99.74%; PPV=42.66%; NPV=100%
			47,XXX: TP=15; FP=8; FPR=0.03%; TN=31365; FN=0; FNR=0;
			sens=100%; spec=99.97%; PPV=65.22%; NPV=100%
			47,XXY: TP=15; FP=5; FPR=0.02%; TN=31368; FN=0; FNR=0;
			sens=100%; spec=99.98%; PPV=75%; NPV=100%
			45,X: TP=20; FP=57; FPR=0.18%; TN=31311; FN=0; FNR=0;
			sens=100%; spec=99.82%; PPV=25.97%; NPV=100%
			47,XYY: TP=10; FP=2; FPR=0.01%; TN=31376; FN=0; FNR=0;
			sens=100%; spec=99.99%; PPV=83.33%; NPV=100%
			46,XY(delX): TP=1; FP=10; FPR=0.03%; TN=31377; FN=0;
			FNR=0; sens=100%; spec=99.97%; PPV=9.09%; NPV=100%
			CNV: NR
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Yang et al., 2021	N = 47800	NIPS Platform	T21 : NR
		In-house	T18 : NR
Country China	Inclusion criteria		T13: NR
		NIPS description	

Study Information	Population	NIPS	Results
Timeframe	aged 18-45 yrs	JingXin	SCA: 238 cases + for SCA, 170 underwent PNDx, 64
January 2015 to	and (ii) GA >12	BioelectronSeq 4000	declined. 85 true positives. no false negatives in the 47, 562
September2019	wks. GA	System semi-	delivered by newborn screening
	determined by	conductor	
Risk of Bias	US. Twins were		9 cases identified in 1530 twins, and 6 had PNDx
ROBINS-I: Moderate	included.	FF: 13.11% (CI: 5.53-	
		17.70)	CNV: NR
Funding/potential COI	Exclusion criteria		RAT: NR
None	NR		Diagnostic Procedures: NR
	Participant		Identification of maternal conditions: identified a mos
	characteristics		45,X[85]/47,XXX
	GA at (groups),		
	12-24 wks, 80.8%		Psychosocial outcomes: NR
	Age (groups), <35		
	yrs, 88.10%		
Yao et al., 2019	N = 15626	NIPS Platform	Combined T21/T18/T13:
		Illumina	TP=68; FP=18; TN=13651; FN=0; FPR=0.13% (0.08%-0.21%);
Country China	Inclusion criteria		PPV=79.07% (68.69%-86.80%); incidence=0.50%
	≥18 yrs old; GA	NIPS description	
Timeframe May 2011 to	>10 wks; willing	Analyzed by BGI-	PPV dropped from 79.07% reporting just T21/T18/T13 with
December 2014	to undergo NIPS	Shenzhen	each additional category reported (SCA, CNV, other)
	for 1 st - or 2 nd -tier		
Risk of Bias	screening	175 (1.12%) blood	SCA: (overall): TP=26; FP=16; TN=13651; FN=1; FPR=0.12%
ROBINS-I: Moderate		samples had to be	(0.07%-0.19%); PPV=61.90% (45.65%-76.01%);
	Exclusion criteria	re-sampled, and 10	incidence=0.20%
Funding/potential COI	unclear clinical	(0.06%) samples	
None	information or	failed to generate	45,X: TP=4; FP=10; TN=13651; FN=0; FPR=0.07% (0.04%-
		informative results	0.14%); PPV=28.57% (9.58%-58.00%); incidence=0.03%

Study Information	Population	NIPS	Results
	known maternal		
	aneuploidy		47,XXX: TP=11; FP=2; TN=13651; FN=0; FPR=0.01% (0.00%-
			0.06%); PPV=84.62% (53.66%-97.29%); incidence=0.08%
	Participant		
	characteristics		47,XXY:TP=9; FP=3; TN=13651; FN=1; FPR=0.02% (0.01%-
	Mean (range):		0.07%); PPV=75.00% (42.84%-93.31%); incidence=0.07%
	29.99 (18-50)		
			47,XYY: TP=2; FP=1; TN=13651; FN=0; FPR=0.01% (0.00%-
	Mean (range) GA:		0.05%); PPV=66.67% (12.53%-98.23%); incidence=0.01%
	18.65 (10-36) wks		
			CNV: TP=4; FP=3; TN=13651; FN=0; FPR=0.03% (0.01%-
			0.07%); PPV=57.14% (20.24%-88.19%); incidence=0.03%
			RAT: NR
			Diagnostic Procedures: NR
			Identification of maternal conditions: NR
			Psychosocial outcomes: NR
Ye et al., 2021	N = 873	NIPS Platform	T21 : NR
		In-house; BGISEQ-	T18 : NR
Country China	Inclusion criteria	500 (MGI, China)	T13: NR
	NR		SCA: NR
Timeframe NR		NIPS description	
	Exclusion criteria	Previously reported	CNV: Total abnormal = 52. 34 TP. 18 FP. Sensitivity
Risk of Bias	NR		65.38%. Specificity 97.45%
ROBINS-I: Moderate			
	Participant		CNV >=2Mb = 38. 31 TP. 7 FP. Sensitivity 81.58%.
Funding/potential COI	characteristics		Specificity 98.18%
None	Median (range)		
	age: 28.16 (21-		CNV >=2Mb = 14. 3 TP. 11 FP. Sensitivity 21.43%.
	45) yrs		Specificity 99.27%

Study Information	Population	NIPS	Results
Yin et al., 2020 Country China	Median (range) GA: 17.29 (11-24) wks N = 6239 Inclusion criteria	NIPS Platform FlexiGene	RAT: NR Diagnostic Procedures: NR Identification of maternal conditions: NR Psychosocial outcomes: NR T21: NR T18: NR T13: NR
Timeframe December 2017 to June 2019	singleton gestations, natural	NIPS description Ion Proton Sequencing System	SCA: NIPT+ n=17; confirmed by amnio, n=11; TP=64.7% Among the 6 cases with inconsistent results, 5 were 45,X
Risk of Bias ROBINS-I: Serious	conceptions, consents were signed, and US performed prior	(Life Technologies)	and 1 was an 47,XYY. In the SCA cases, 1 case of serological screening showed a high risk of T21; 3 cases of serological screening showed abnormal MoM; 1 case of serological screening showed a low risk; and 4 cases were AMA.
Funding/potential COI None	to the blood draw for GA and NT Exclusion criteria NR		CNV: NIPT+ n=16; confirmed by amnio, n=9; TP=56% 2 cases were T18 NIPT dup + but n=1 confirmed All abnormal microdeletion/microduplications were de novo.
	Participant characteristics Groups: Age, % (yrs) 18-25, 15.6% 26-35, 64.0% 36-44, 20.0% >44, 0.4%		RAT: NR Diagnostic Procedures: NR Identification of maternal conditions: NR Psychosocial outcomes: NR

Study Information	Population	NIPS	Results
	GA, % (wks)		
	12-13 ⁺⁶ , 32.9%		
	14-15 ⁺⁶ , 50.6%		
	16-20 ⁺⁶ , 14.9%		
	>21, 1.6%		
	High risk, 10.6%		
	Low risk, 20%		
	NIPS 1 st tier,		
	63.5%		
D. Yu et al., 2019	N = 20,232	NIPS Platform	T21: T21: TP=103; FP=21; FN=0; TN=19879; sens=100%;
		In-house; sequenced	spec=99.89%
Country China	Inclusion criteria	on NextSeq 550AR	
	NR	(Annoroad Gene	T18: T18: TP=15; FP = 4; FN = 0; TN = 19984; sens=100%;
Timeframe 30 July 2015		Technology, China)	spec=99.98%
and 30 June 2016	Exclusion criteria		
	No confirmatory	NIPS description	T13: T13: TP=2; FP=3; FN=0; TN=19998; sens=100%;
Risk of Bias	amnio; loss of	MagMAX cfDNA	spec=99.99%
ROBINS-I: Moderate	contact	isolation kit;	
			SCA: NR
Funding/potential COI	Participant	229 samples	
None	characteristics	removed from	CNV: w/confirmed results by invasive testing: TP = 29; FP =
	Mean (SD) age:	analysis (positive for	7; FN = 7; sensitivity = 80.56%; PPV= 80.56%; FNR = 19.44%
	32.2 (5.3) yrs	RATS, monosomies	
		other than	RAT: NR
	Mean (SD) GA:	21/18/13; CNVs	Diagnostic Procedures: NR
	18.2 (2.8) wks	w/unknown clinical	Identification of maternal conditions: NR
		significance	Psychosocial outcomes: NR

Study Information	Population	NIPS	Results
W. Yu et al., 2019	N = 1160 twin	NIPS Platform	T21: NR
	pregnancies	In-house; Ion torrent	T18: NR
Country China		sequencing	Overall: Aneuploidy was detected in 26 fetuses using NIPT,
	Inclusion criteria		yielding an aneuploidy rate of 1.1% (26/2320)
Timeframe	(1) twin	NIPS description	Sens: 100%, spec: 100%; FPR=0%
1 October 2015 to 1	pregnancies	NR	
August 2017.	between 1		Diagnostic Procedures: NR
	October 2015,		Identification of maternal conditions: NR
Risk of Bias	and 1 August		Psychosocial outcomes: NR
ROBINS-I: Moderate	2017; (2) age >18		
	years old; (3) US-		
Funding/potential COI	confirmed; (4)		
NR	voluntary NIPS		
	for fetal T21, T18,		
	T13, and SCAs, w/		
	or w/out prior		
	serum screening		
	result; (5) GA ≥8		
	wks; (6) absence		
	of chr		
	abnormalities		
	phenotypically in		
	either parent (7)		
	no receiving of		
	foreign blood		
	transfusion,		
	transplant		
	surgery, cell		
	therapy, or		
	immunotherapy		

Study Information	Population	NIPS	Results
	w/in 1 yr of the		
	pregnancy.		
	Exclusion criteria		
	NR		
	Participant		
	characteristics		
	Median (range)		
	age: 31 (20-54)		
	yrs		
	AMA, 25%		
	Median (range)		
	GA: 18 (8-31)		
	DCDA, 73.2%		
	MCDA, 25.3%		
	MCDA, 25.3% MCMA, 1.2%		
	Unknown, 0.3%		
Zheng et al., 2020	N = 13149 NIPS.	NIPS Platform	T21: 5/4675; 4/4 verified by invasive dx
	Voluntary	In-house	-,, ,
Country China	(general risk)		T18: n=5; 3 TP/5 invasive
•	N=4675	NIPS description	
Timeframe		Sequenced by Berry	T13: n=1 TP0/1 invasive
January 2015 to	Inclusion criteria	Genomics	
December 2017	Based on national		SCA: n=38, TP8/25 invasive; PPV = 32% (8/25)
	(China) criteria	28 samples (0.2%)	
	for clinical	failed QC.	CNV: n=3, TP0/3 invasive
Risk of Bias			

Study Information	Population	NIPS	Results
ROBINS-I: Moderate	application of		RAT: n=3, TP0/3 invasive
	NIPS; GA ≥12 wks		
Funding/potential COI			Diagnostic Procedures: NR
None	Exclusion criteria		Identification of maternal conditions: NR
	(1) GA < 12 wks;		Psychosocial outcomes: NR
	(2) parents w/		
	definite		
	chrabnormalities;		
	(3) w/in 1 year,		
	receipt of		
	allogeneic blood		
	transfusion,		
	transplantation,		
	allogeneic cell		
	therapy, etc.; (4)		
	fetal US indicated		
	structural		
	abnormalities; (5)		
	having a family		
	history of genetic		
	disease or		
	suggesting a high		
	risk of genetic		
	disease in the		
	fetus; (6)		
	pregnancy with		
	malignant tumor;		
	and (7) other		
	circumstances		
	that the doctor		

Study Information	Population	NIPS	Results
	thinks have a		
	significant impact		
	on the accuracy		
	of the results.		
	Participant		
	characteristics		
	Mean (range)		
	age: 28 (17-48)		
	yrs		
	Mean (range) GA:		
	17 ⁺² (12-29) wks		
Zhou et al., 2017	N = 112021; 74	NIPS Platform	T21 : NR
	w/FP NIPS	NR; assumed Berry	T18 : NR
Country China		Genomics	T13 : NR
	Inclusion criteria		SCA: NR
Timeframe January	Subset of	NIPS description	CNV: NR
2015 to April 2016	patients with	massively parallel	RAT: NR
	known FP NIPS	sequencing on the	Diagnostic Procedures: NR
Risk of Bias	results confirmed	NextSeq CN500	
ROBINS-I: Moderate	by amnio	platform	Identification of maternal conditions: In 6 out of the 74
			false positive cases (8.1%), a maternal chromosome CNV
Funding/potential COI	Exclusion criteria		was identified. Interrogation of the six CNVs against
Multiple authors	NR		databases of known genetic variants found no association
employed by Berry			with known chromosome disease syndromes
Genomics	Participant		
	characteristics		Psychosocial outcomes: NR
	NR		

Study Information	Population	NIPS	Results
Zhou et al., 2019	N = 17894; 228	NIPS Platform	Overall: 91 as T21, 28 as T18, 6 as T13; 95 for fetal sex
	w/NIPS+ results	Illumina Next CN 500	chromosome aneuploidies (56 as Turner syndrome, 21 as
Country China			Klinefelter syndrome, 12 as XXX syndrome, 6 as XYY
	Inclusion criteria	NIPS description	syndrome), and 8 for microdeletion or microduplication
Timeframe	Pts w/ NIPS+	NR	involving multiple autosomes or sex chromosomes. Dx
January 2012 to	results		verified by additional testing (incl. ultrasound?) & follow-
December 2017			up; out of 174 pts who 'accepted dx'(?), 124 as TP, 50 as FP,
	Exclusion criteria		NIPT PPV=71.3%
Risk of Bias	NR		
ROBINS-I: Moderate			Diagnostic Procedures: NR
	Participant		Identification of maternal conditions: NR
Funding/potential COI	characteristics		
None	GA between 13-		Psychosocial outcomes: Following prenatal genetic
	27 wks, 100%		counseling for NIPS+ results, 174 pts (76.3%) accepted the
			prenatal diagnosis, and 54 pts (23.7%) rejected the
	Age, range: 16-49		diagnosis for various reasons, such as severe ultrasound
	yrs; AMA, 33.77%		abnormalities, worry about abortion, etc.
	Twins, 3.07%		
Zhu et al., 2021	N = cohort 1 =	NIPS Platform	T21 : NR
	39134; cohort 2 =	In-house	T18: NR
Country China	31307		T13: NR
		NIPS description	SCA: NR
Timeframe cohort 1:	Inclusion criteria	Sequenced on	
between 2015 and	Singleton	Illumina NextSeq500	CNV: Cohort 1 total: 39134. T7 = 23 = 0.059%. Diagnostic
2018; cohort 2: 2018 to	pregnancies		done on 14. TP = 1/14 (mosaic).
2019			Cohort 2 total: 31307. T7 = 16 = 0.051% Diagnostic done on
	Exclusion criteria		14. TP = 0/14.
Risk of Bias	NR		**Authors use only Cohort 1 to calculate PPV (7.1%)**
ROBINS-I: Moderate			

Study Information	Population	NIPS	Results
	Participant		RAT: NR
Funding/potential COI	characteristics		Diagnostic Procedures: NR
Two authors employees	Median GA:		Identification of maternal conditions: NR
of Xcelom which	cohort 1, 14.3		Psychosocial outcomes: NR
provides NIPS in Hong	wks; cohort 2,		
Kong and Macau.	18.4 wks		
	Median age:		
	cohort 1, 32 yrs;		
	cohort 2, 30 yrs		
Abbreviations: CNV, copy	-number variant; CO	I, conflict of interest; FF	, fetal fraction; FN, false negative; FP, false positive; mo(s),
month(s); NR, not reporte	ed; RAT, rare autosor	mal trisomy; SCA, sex ch	promosome aneuploidy; T21, trisomy 21; T18, trisomy 18;
T13, trisomy 13; TN, true	negative; TP, true po	ositive; wk(s), week(s); y	ır(s), year(s)

Supplemental Figure 7: Summary Risk of Bias using QUADAS-2

Supplemental Table 24: Summary of all included economic analyses of NIPS

Author, Year,	Study	Population		Re	sults
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
Avram et al.,	Study objective:	Source: theoretical	Intervention (I): NIPS	Cases identified (n):	NIPS + microdeletion
2021	Investigate the	cohort	(T21/T18/T13 and 5 pathogenic	I: 252	improved effectiveness by
	costs and		microdeletion syndromes:	C: 335	977 QALYs & decreased
Country:	outcomes	N = 4,000,000	22q11.2, Prader-Willi, Angelman,		cost by \$90.9 million vs.
United States	associated with	pregnant	Cri-du-chat, 1p36 deletion	Amnio-related losses:	NIPS for aneuploidies alone
	NIPS with and	individuals	syndrome)	I: 152	
Setting:	without	undergoing		C: 4	Largest driver of results is
general	screening for	prenatal genetic	Comparator(s) (C): NIPS	Terminations:	the incremental costs of
population	microdeletions	screening in the US	(T21/T18/T13) plus ultrasound	I: 805	reporting microdeletions in
screening				C: 450	addition to aneuploidies; at
	Perspective:	Risk: NR	Source of data inputs: published		cost-effectiveness
Funding: one	Societal		literature; large population	Spontaneous abortions in	threshold of
author		Age: NR	studies	2 nd /3 rd trimester:	\$100,000/QALY,
supported by	Currency, year:			I: 20,327	intervention is cost-
NIH grant and	USD, 2019		Model: decision-analysis	C: 20,527	effective until an
research funds					incremental cost exceeds
from Fetal	Time Horizon:		Sensitivity analyses: univariate on	Neonatal deaths:	\$47.10.
Health	duration of		probabilities, costs, utilities;	I: 8,783	
Foundation for	pregnancy		incremental costs for	C: 8,858	Intervention cost-effective
unrelated			microdeletion reporting;		in 92.8% of trials
research	Discount rate:		specificity; elective termination	Cost:	
	3%/year		rates; multivariate sensitivity	I: \$9,207,462,943	Limitations: Lack of some
Conflicts of	(maternal		analyses to evaluate robustness	C: \$9,298,454,727	data necessitated the use
interest: NR	lifespan only)		w/10,000 trials in Monte Carlo		of comparator syndromes
			analysis to simultaneously vary	Maternal QALYs:	for data for the models; no
			probabilities, costs, & utilities	I: 107,950,761	non-NIPS comparator

Author, Year,	Study	Study Population		Results		
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations	
				C: 107,949,784		
			Measure of effectiveness:			
			Synthesis-based; ICER of	ICER:		
			\$100,000/QALY or less	I: dominant		
				C: dominated		
			Outcomes: clinical outcomes			
			(number of affected cases,			
			pregnancy loss, termination,			
			neonatal death); total costs;			
			maternal QALYs			
Burrus et al.,	Study objective:	Source: theoretical	Intervention (I): NIPS (T21/T18)	Upfront costs of testing (for	In a low-resource military	
2021	Compare direct	cohort based on		cohort n=100):	setting, NIPS is more	
	and indirect	historical delivery	Comparator(s) (C): 2-part serum-	I: \$44,140.32	expensive than 2-part	
Country:	costs of	volume at the	based screening (two-part	C: \$8285.01	serum-based screening per	
United States	conventional	military hospital	integrated screen & 2 nd trimester		cohort of 100 pts but	
	serum screening	over a 5-to-6-year	"quad" test)	Total of upfront & secondary	reaches cost-equivalence	
Setting:	compared to	period		costs: (e.g., travel, consultations)	when NIPS cost ~\$340/test	
Austere	NIPS to detect		Source of data inputs: NIPS	I: \$45,782.35/cohort		
environment	T21/T18 in a	N: 100 pregnant	performance by a single	C: \$31,324.10/cohort	Limitations:	
(Cuba/US	low-resource	individuals	laboratory; travel costs:		1. Models did not include	
Military	setting		Department of Defense;	Prenatal cost equivalence:	detection of open neural	
Hospital)		Risk: NR; assumed	associated medical costs:	occurs when NIPS upfront cost	tube defects or other	
	Perspective:	general risk	published Tricare reimbursement	approx. \$341.17/test	aneuploidies, rate of loss of	
Funding: None	government		rates and pricing from a large		euploid pregnancies from	
	(military) payer	Age (y), mean	health care system; incidence of		amnio., number of	
Conflicts of		(range): historical	diagnostic testing: estimated by		aneuploid pregnancies	
interest: None	Currency, year		Maternal-Fetal Medicine		averted through	

Author, Year,	Study	Population		Resul	ts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
	NR; assumed	cohort (n=48): 26.9	clinicians within the Military		termination, or postnatal
	USD	(19-39)	Health System; productivity costs:		care of an infant w/an
			2005 RAND Corp report, adjusted		aneuploidy.
	Time Horizon:		for inflation		2. The specific setting used
	duration of				in this analysis may not be
	pregnancy		Model: cost-of-care analysis		generalizable to other low- resource settings
	Discount rate:		Sensitivity analyses: NR		3. Limited description of
	NR				key variables and sensitivity
			Measure of effectiveness: NR		analyses
			Outcomes: direct and indirect		
			costs of testing; cost-equivalence		
			for NIPS		
Xie et al., 2020	Study objective:	Source: theoretical	Intervention:	Incremental cost of NIPS (CDN\$	2 nd -tier NIPS dominated
	Determine the	cohort based on	1 st -tier NIPS (T21/T18/T13)	(95% Crl):	conventional screening;
Country:	cost-	estimated number		• Contingent NIPS vs TPS:	detecting more affected
Canada	effectiveness	of pregnancies in	Comparator: conventional	—866,301 (—1,549,974;	fetuses, reducing number
	and budget	Ontario from 2018-	screening (TPS)	—286,869)	of diagnostic tests
Setting:	impact of	2022		• 1 st -tier NIPS vs contingent	performed, reducing total
general	primary NIPS in		Source of data inputs: multiple	NIPS: 33,036,595	screening costs
population	average-risk	N : 142,000-	published studies, European	(25,523,479; 40,574,118)	
screening	individuals	148,000	Registry; NIPS detection and false		1 st tier NIPS was dominated
			positive rates from a single study;	Difference in diagnostic tests, (n	by 2 nd tier NIPS strategy;
Funding:	Perspective:	Risk: average risk	NIPS failure rate from a review;	(95% Crl)):	finding an additional 80
Health Quality	provincial public	(<0.008 at 12	uptake of diagnostic testing after	• Contingent NIPS vs TPS: —	affected fetuses and
Ontario	payer in Canada	weeks gestation)	positive NIPS or positive TPS+NIPS was estimated; cost data from a	2447 (—3342; —1669)	costing an additional \$33 million.

Author, Year,	Study	Population		Result	ts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
	Currency, Year	Age: target	hospital, Ontario Schedule of	• 1 st -tier NIPS vs contingent	
Conflicts of	CDN\$, 2017	population age <40	Benefits, Ontario Case Costing	NIPS: —91 (—200; 26)	TPS was not the optimal
interest: one		yrs	Initiative, or published study		screening strategy at any
author receives	Time Horizon:			Difference in diagnostic	WTP threshold; at WTP
research	length of full-		Model: decision analysis;	procedure-related pregnancy	threshold >\$415000, 1 st tier
materials from	term pregnancy		probabilistic simulation analysis	losses, n (95% Crl):	NIPS was optimal strategy
PerkinElmer	(12 weeks to		w/5000 repetitions	• Contingent NIPS vs TPS: -5	
and education	term)		• TPS	(—11; 0)	Analyses including SCA and
funds to attend			Contingent NIPS following	• 1 st -tier NIPS vs contingent	22q11.2 deletion screening
workshops by	Discount rate:		positive TPS result	NIPS: 0 (-2; 3)	were preliminary
Thermo Fisher	NA				
Scientific			Sensitivity analyses: NIPS price,	Difference in affected live	Limitations:
			WTP thresholds, uptake rate for	births , n (95% Crl):	Included costs of nuchal
			1 st tier NIPS, NIPS FPR, trisomy	• Contingent NIPS vs TPS: -12	translucency ultrasound
			prevalence; acceptance rate for	(scans & GC in cost of 1 st tier
			further testing; SCA & 22q11.2	• 1 st -tier NIPS vs contingent	NIPS; data for the SCA and
			deletion screening in 1 st tier NIPS	NIPS: -29 (-51; -8)	22q11.2 deletion are sparse
					& results of their analyses
			Measure of effectiveness: (1)	Incremental cost of NIPS per	should be considered in this
			numbers of chromosomal	additional affected fetus	context; did not consider
			anomaly cases detected and	(T21/T18/T13), CDN\$:	the societal perspective;
			confirmed; (2) number of	Contingent NIPS vs TPS:	estimated cost/affected
			diagnostic tests performed; (3)	Dominant	fetus instead of cost/QALY
			number of pregnancy losses	• 1 st -tier NIPS vs 2 nd -tier NIPS:	over a lifetime horizon;
			related to diagnostic testing; (4)	\$412,411	input parameters may not
			number of live births with		be robust estimates; did
			T21/T18/T13	Incremental cost of NIPS per	not include additional costs
				additional affected fetus	for women who receive a

Author, Year,	Study	Population		Results		
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations	
			Outcomes: incremental cost,	(T21/T18/T13; SCAs [expected	positive NIPS result but	
			incremental effectiveness,	prevalence]), CDN\$:	decline further testing	
			incremental cost per additional	1 st -tier NIPS vs contingent NIPS:		
			affected case detected	\$154,839		
				Incremental cost of NIPS per		
				additional affected fetus		
				(T21/T18/T13; SCAs [expected		
				prevalence], 22q11.2 deletion),		
				CDN\$:		
				1 st -tier NIPS vs contingent NIPS:		
				\$183,120		
Gomes et al.,	Study objective:	Source: theoretical	Intervention (I): Contingent	Total costs:	NIPS does not substantially	
2019	assess	cohort based on	screening w/NIPS (T21, T18, T13)	I: 322 290 €	raise the costs of a	
	performance of	clinical cohort		C: 309 760 €	screening program	
Country:	contingent NIPS	(n=1272) receiving	Comparator (C): 1 st -trimester		compared to no NIPS and	
Portugal	one year after	1 st -trimester	combined screening	Incremental cost of contingent	reduces the rate of invasive	
	clinical	screening between		NIPS : 1.25 € per patient	tests	
Setting: 1 st -	implementation	March 2017-	Source of data inputs: historical			
trimester		February 2018	clinical data; costs and rate of	Rate of invasive tests:	Limitations:	
screening in a	Perspective: NR		hospital admissions from a single	Contingent NIPS: 2.44% vs.	Extremely limited reporting	
low-risk		N : 10 000	publication	1 st -trimester screening: 3.52%;	of statistical model and	
population	Currency, Year			p = 0.086	inputs, perspectives, etc.;	
	Euro, NR	Risk: intermediate	Model: cost-effectiveness		unclear generalizability	
Funding: NR		risk (1:100-1:500);				
	Time Horizon:	low risk (<1:500)	Sensitivity analyses: NR			
Conflicts of	NR					
interest: None		Age, mean (SD):	Measure of effectiveness: direct			
		30.05 (5.9) years	costs			

Author, Year,	Study	Population		Result	S
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
	Discount rate:				
	NR		Outcomes: rate of invasive tests		
			performed; performance of		
			aneuploidy screening;		
			incremental cost associated with		
			contingent NIPS		
Kostenko et	Study objective:	Source: theoretical	Intervention: NIPS as 1 st tier	Incremental cost/trisomy	NIPS as the primary
al., 2019	Evaluate the	cohort based on	screening (Harmony [®] prenatal	detected (€) based on FPR (%)	screening strategy
	clinical and	estimated annual	test, Roche) (T21, T18, T13)	0.1%: 3617	substantially decreased the
Country:	economic impact	number of		0.3% 4199	number of invasive tests
Belgium	of NIPS as a 1 st -	pregnancies	Comparator(s): Conventional	0.6% 4889	and treatment-related
	line screening	reaching 10 weeks	screening (FTS, STS)	1% 5808	miscarriages; the
Setting:	for T21/T18/T13	gestation in			incremental cost per
general	in general-risk	Belgium	Source of data inputs: costs from	Estimated cost/trisomy dx,	trisomy diagnosed varied
pregnancy	pregnancy		government registries; published	based on NIPS cost of 260€: 3617	by the FPR of the test; the
population of	population	N : 131,567 (range:	studies, expert review		authors state that at a NIPS
Belgium		105, 254-157,880)		Number of invasive tests, n, (I	cost of 260€/NIPS test, the
	Perspective:		Model: decision-analysis	vs. C): 797 vs. 8709; difference:	effectiveness and decreases
	public health	Risk : general risk		—7,912 (—90.8%)	in numbers of invasive tests
Funding: Roche	system		Sensitivity analyses: one-way;		come at a 'reasonable cost'
Sequencing		Age: NR	FPRs, test performance; extreme	Number of procedure-related	
Solutions	Currency, Year		case analysis (assume best and	miscarriages, n (I vs C): 4 vs 44;	Limitations: limited time
funded the	Euro, 2018		worst performance)	difference: —40 (—90.8%)	horizon that does not
study					account for lifetime costs of
	Time Horizon:		Measure of effectiveness:	Total trisomies detected, n (%), I	a child with a trisomy; input
Conflicts of	prenatal		incremental costs; incremental	vs C: 411 (99%) vs 318 (81%)	costs may not be
interest:	screening period		effectiveness		generalizable or change
multiple				Detection rate T21, n (%), I vs C:	over time
authors are				293 (100%) vs 221 (79%)	

Author, Year,	Study	Population		Resul	ts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
employees of	Discount rate:		Outcomes: number of invasive		
Roche	NA		tests, procedure-related	Detection rate T18, n (%), I vs C:	
Sequencing			miscarriages or other	87 (97%) vs 74 (87%)	
Solutions or			complications, missed trisomies,		
GfK			total number of trisomies	Detection rate T13, n (%), I vs C:	
consultancy;			detected	31 (94%) vs 24 (75%)	
multiple					
authors have					
previously					
received					
consulting fees					
from Roche					
Le Bras et al.,	Study objective:	Source: theoretical	Intervention (I): NIPS in the	Cost (€)	NIPS in a general
2019	Evaluate the	cohort based on	general population (T21/T18/T13,	I: 287 610 817	population to detect all
	cost-	expected number	other UBCA)	C1: 12 004 022	unbalanced chromosomal
Country:	effectiveness of	of annual		C2: 39 969 156	anomalies (trisomies, SCAs,
France	multiple	pregnancies in	Comparators (C): invasive testing	C3: 12 610 144	and other) was not cost-
	screening	France	following 1 st -trimester screening	C4: 43 053 119	effective at costs ranging
Setting:	strategies				from €188-496, compared
general	compared to	N : 652 653	Source of data inputs: 2016 data	ICER per additional UBCA	to risk-based strategies.
population	NIPS		from French Biomedicine Agency	detected:	
screening		Risk: variable	(published and unpublished);	l vs C2, €9,166,689	Limitations: did not include
	Perspective:		French National Health Insurance		the ability of NIPS to detect
Funding:	healthcare	Age: NR	tariff; French Ministry of Health;	T21 detected (n):	SCA or other UBCAs; input
French	provider		published data from single studies	I: 1070	values may vary over time
Ministry of				C1: 876	and other variables (e.g.,
Health	Currency, Year		Model: cost-effectiveness	C2: 1025	location); results may not
	Euro, 2017		1. Contingent NIPS for pts w/a risk	C3: 879	be generalizable to
			following FTS of ≥1/250	C4: 1028	different health care

Author, Year,	Study	Population		Resu	lts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
Conflicts of	Time Horizon:		2. Contingent NIPS for pts w/a risk		systems; miscarriage rate CI
interest: NR	period from		of ≥1/1000	T21/T18/T13 detected, (n):	was reported but not
	completion of		3. invasive testing for pts w/a risk	l: 1168	shown w/analysis
	FTS to		of ≥1/250	C1: 959	
	completion of		4. invasive testing for pts w/a risk	C2: 1121	
	testing		of ≥1/1000	C3: 963	
				C4: 1125	
	Discount rate:		Sensitivity analyses: (one-way) 1.		
	None		Cost of NIPS €100; 2. Deducted	All UBCA detected, (n):	
			cost of FTS in general risk pop.; 3.	l: 1168	
			Difference on rate of miscarriage	C1: 959	
			for women w/a risk of \geq 1/250 and	C2: 1121	
			≥1/1000; 4. NIPS (Panorama™,	C3: 1138	
			cost €427) detected trisomies and	C4: 1330	
			SCAs		
			Measure of effectiveness:		
			incremental costs		
			Outcomes: direct costs; number		
			of UBCAs detected; estimated		
			number of miscarriages;		
			incremental cost per additional		
			UBCA detected		
Nshimyumukiz	Study objective:	Source: theoretical	Intervention (I): NIPS as 1 st tier	Base analysis,	Contingent NIPS after
a et al., 2018	Evaluate the	cohort	test (T21/T18/T13)	Serum integrated + NIPS	serum screening was the
	cost-			(dominant) vs universal NIPS:	dominant screening
Country:	effectiveness of			Costs (CAD\$):	strategy across most
Canada	NIPS (1 st -tier or			\$9,534,059 vs \$66,596,727	analyses until the cost of

Author, Year,	Study	Population		Result	ts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
	contingent	N : 1,879,872	Comparator(s) (C): current	All strategies w/contingent NIPS	NIPS dropped below \$400,
Setting:	screening) with	(range: 1,870,000 –	screening strategies	(C7-12) were less expensive than	when QUAD + NIPT became
general	traditional	1,900,000)	recommended by SOGC	current screening strategies (C1-	the dominant strategy.
screening in	prenatal			6)	NIPS as 1 st tier test was
Quebec	screening	Risk: 1:300 cut-off	Source of data inputs: single		dominated by other
	strategies	for traditional	published studies and	Cost/case T21 detected:	strategies unless (1) cost of
Funding:		screening	assumptions for population and	\$63,139 vs \$308,318	NIPS set at \$240 and the
supported by	Perspective:		probabilities data; one to a few		cost per T21 case detected
PEGASUS	payer (public	Age: NR	studies for costs and screening	ICER/case of T21 detected:	equaled cost of integrated
project	health system		performance	Universal NIPS, \$1,553,615	screening strategy; or (2)
(Genome	(Quebec))				cost of NIPS set at \$184 and
Canada,			Model: decision-analysis; semi-	Base analysis,	cost per T21 case detected
Canadian	Currency, Year		Markov agent and population-	Serum integrated + NIPS	equaled the cost of serum
Institutes of	CAD, 2014-2015		based model simulations	(dominant) vs universal NIPS:	screening strategy
Health)	fiscal yr		performed 1000 times		
			C1-6: No NIPS Current	Invasive tests (n):	Limitations: compared
Conflicts of	Time Horizon:		strategies recommended by	259 vs 539	many screening
interest: four	duration of		SOGC		recommendation strategies
authors receive	pregnancy		C7-12: Contingent NIPS	Euploid fetal losses (n):	across a variety of WTP
research			following a positive result	0.0122 vs 0.495	thresholds and other
materials from	Discount Rate:		from C1-6		variables; results may not
commercial	None			T21 detected:	be generalizable outside of
NIPS labs or			Sensitivity analyses (one-way &	151 vs 216	the perspective and
equipment			probabilistic; 1000x w/different	T18 & T13 detected:	assumptions; limited time
that can be			virtual populations): Costs and	69 vs 98	horizon that does not take
used to			event probabilities; risk cut-offs		into consideration costs
perform NIPS					associated w/clinical mgmt.
			Measure of effectiveness: cost		of pts w/a chromosomal
			per T21 case detected;		aneuploidy; does not

Author, Year,	Study	Population		Resul	Results		
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations		
			incremental cost per additional		include SCAs or other		
			T21 case detected		chromosomal abnormalities		
					that may be detected by		
			Outcomes: total direct costs to		NIPS; costs from 2014-2015		
			health care system; number of		may not reflect current		
			affected fetuses detected;		costs		
			number of invasive procedures;				
			number of euploid fetal losses				
Colosi et al.,	Study objective:	Source: clinical	Intervention (I): contingent NIPS	Total estimated costs (€):	Contingent NIPS after a		
2017	Determine	population	(T21/T18/T13)	Combined test: 2,385,473	combined test that includes		
	optimal (best			Primary NIPS: 5,796,060	evaluation of nasal bone is		
Country: Italy	value/costs)	N : 20 831	Comparator (C): combined test	Contingent NIPs: 2,834,213	the least costly screening		
	screening			Contingent NIPS + nasal bone	option and yields the		
Setting:	strategy for NIPS	Risk: intermediate	Source of data inputs: clinical	eval: 2,338,433	lowest number of invasive		
patients		1:251 to 1:1000;	population (effectiveness and		procedures and highest		
undergoing 1 st -	Perspective:	low >1:1000	costs of screening for trisomies,	Invasive procedures (n):	detection rate for the		
trimester	public payer		test performances)	Combined test: 1313	trisomies		
screening at		Age, median: 32.3		Primary NIPS: 760			
single hospital	Currency, Year	yrs	Model: cost-effectiveness	Contingent NIPs: 188	Limitations: minimal		
in Italy	Euro, NR		Combined test (no NIPS)	Contingent NIPS + nasal bone	reporting of key cost-		
between			Primary NIPS	eval: 188	effectiveness metrics (e.g.,		
November	Time Horizon:		Contingent NIPS if risk		time horizon); did not		
2011 to May	NR		between 1:10-1:1000	Detection rate for T21/T18/T13:	perform sensitivity analyses		
2015			Contingent NIPS if risk	Combined test: 94.92%	to evaluate uncertainty		
	Discount Rate:		between 1:10-1:1000 and	Primary NIPS: 97.82%			
Funding: NR	NR		nasal bone evaluation	Contingent NIPs: 97.82%			
				Contingent NIPS + nasal bone			
Conflicts of			Sensitivity analysis: None	eval: 97.82%			
interest: None							

Author, Year,	Study	Population		Results		
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations	
			Measurement of effectiveness:			
			NR			
			Outcomes: detection rate; final			
			costs; invasive test rate			
Crimmins et	Study Objective:	Source: clinical	Intervention (I): NIPS (T21)	Change in rate of invasive	At a cost of \$360.66, NIPS	
al., 2017	Determine the	population		procedures (%), I vs C: —55.4%	as the primary screen to	
	threshold point		Comparator (C):		detect T21 is cost-	
Country:	at which NIPS	N : 590	QUAD screen for T21	Change in rate of procedure-	equivalent to QUAD	
United States	would be at least			related loss (%), I vs C: -57%	screening and results in	
	cost equivalent	Risk: NR	Source of data inputs: Cost inputs		substantial reductions in	
Setting: urban	to QUAD		from published literature, local	Pts meeting w/GC (%), I vs C:	the number of invasive	
population	screening	Age (yrs), median	costs (e.g., GC session), or	2.9% vs 14.7% (—78%)	procedures, the number of	
receiving 2 nd -		(range): 23.9 (15-	Medicaid data		procedure-related losses,	
trimester	Perspective: NR	44)		Cost-equivalence between	and the number of patients	
screening	(presumed		Model: decision-analysis; cost-	primary NIPS and QUAD:	needing to meet with GCs	
	health care		sensitivity	\$360.66	for risk assessment in	
Funding: NR	provider)				patients presenting in the	
			Sensitivity analyses: Cost of NIPS		2 nd trimester.	
Conflicts of	Currency, Year		(\$0-\$3000)			
interest: None	USD, NR				Limitations: very limited	
			Measure of effectiveness: cost-		reporting of key cost-	
	Time Horizon:		equivalence		effectiveness variables	
	NR				(e.g., time horizon,	
			Outcomes: rate of invasive		perspective); inputs based	
	Discount rate:		procedures; rate of procedure-		in part on local data which	
	NR		related loss; number of patients		may not be generalizable to	
			meeting with the genetic		other locations or may vary	
			counselor			

Author, Year,	Study	Population		Resul	ts
Country	Characteristics	Characteristics	Analysis Parameters	Outcomes	Interpretation/Limitations
					over time; narrow focus on
					T21
Huang et al.,	Study objective:	Source: theoretical	Intervention (I): primary NIPS	(NIPS cost \$550)	With NIPS ≤\$400,
2017	Identify a	cohort based on	(T21)	Total program costs:	contingent NIPS after EFTS
	screening	historical cohort of		IPS: \$17,385,291	was the dominant
Country:	strategy for T21	pregnant	Comparator (C): conventional	FTS+NIPS: \$21,821,010	screening strategy. In all
Canada	that maximized	individuals in	screening strategies	EFTS+NIPS: \$18,583,611	scenarios, universal NIPS
	performance	Ontario from April		Primary NIPS w/100% uptake of	for T21 was dominated.
Setting:	and minimized	2011 to March	Source of data inputs: published	diagnostic test after NIPS failure:	
general	costs	2012	studies for NIPS performance and	\$59,384,682	Limitations: did not report
population			failure rate; outcomes derived		key cost-effectiveness data
screening	Perspective:	N : 97385	from actual outcomes of historical	Cost per individual screened:	(e.g., time horizon); analysis
	public payer		cohort	IPS: \$179	of extremes for uptake of
Funding: NR		Risk: variable;		FTS+NIPS: \$224	dx testing after NIPS failure;
	Currency, Year	1:200; 1:1500;	Model: cost-effectiveness	EFTS+NIPS: \$191	inputs may not reflect
Conflicts of	NR; NR	1:1000	 Integrated screening (IPS) 	Primary NIPS w/100% uptake of	current estimates; overall
interest: NR			• Contingent NIPS after 1 st -	diagnostic test after NIPS failure:	results may not be
	Time Horizon:	Age: NR	trimester screening (FTS)	\$610	generalizable to other
	NR		Contingent NIPS after		locations or health system
			enhanced 1 st -trimester	Cost per T21 case detected:	structures; narrow focus on
			screening (EFTS) [includes	IPS: \$129,114	T21
			serum placental growth	FTS+NIPS: \$91,605	
			factor and alpha fetoprotein]	EFTS+NIPS: \$78,014	
				Primary NIPS w/100% uptake of	
			Sensitivity analyses:	diagnostic test after NIPS failure:	
			Extremes of choice for uptake of	\$236,833	
			diagnostic testing after failed		
			NIPS; cost of NIPS (\$550, \$400,	NIPS cost \$200:	
			\$200)	Total program costs:	

Author, Year,	hor, Year, Study Population			Results					
Country	Characteristics	aracteristics Characteristics Analysis Param		Outcomes	Interpretation/Limitations				
				IPS: \$17,385,291					
			Measure of effectiveness: NR	FTS+NIPS: \$15,242,641					
				EFTS+NIPS: \$14,834,281					
			Outcomes: number of detected	Primary NIPS w/100% uptake of					
			T21 cases; detection rate; number	diagnostic test after NIPS failure:					
			of invasive tests; procedure-	\$25,299,867					
			related fetal loss (unaffected);						
			total costs and costs per	Cost per individual screened:					
			individual screened, per	IPS: \$179					
			additional T21 case diagnosed	FTS+NIPS: \$157					
				EFTS+NIPS: \$152					
				Primary NIPS w/100% uptake of					
				diagnostic test after NIPS failure:					
				\$260					
				Cost per T21 case detected:					
				IPS: \$129,114					
				FTS+NIPS: \$63,989					
				EFTS+NIPS: \$62,274					
				Primary NIPS w/100% uptake of					
				diagnostic test after NIPS failure:					
				\$100,899					

Supplemental Figure 8. Risk of bias of individual studies included in the economic analyses of NIPS.

	Risk of bias																		
		D1	D2	ÞЗ	D4	D5	D6	D	р	91	¢1	þ 1	Þ1:	01)1\$	10	ı1þ	101	920
	Avram et al., 2021	+	-	+	+	-	-	+-	+ -	+	+	+	+	+	+	+	+	-	-+
	Burrus et al., 2021	+	Х	Х	+	-			+)	(+	-	-	Х	+	-	+	X	H	-+
	Colosi et al., 2017	+	+	-	+	-		-	- -	· -	-	-	Х	-	-			+ -	+
	Crimmins et al., 2017	+	-	-	-	-		+-	++		-	+	-	+	+	+	-	-	+
Study	Gomes et al., 2019	+	+	-	+	-			+ -	· -	-	-	-	+	X	+	X	+ -	+
St	Huang et al., 2017	+	+	-	+	-		-	- +		-	+	-	+	+		+-	+ -	· -
	Kostenko et al., 2019	+	+	+	+	-		+-	++	+	+	-	-	+	+	+	+-	+)	(X
	LeBras et al., 2019	+	+	-	+	-		+-	++		+	Х	Х	+	+	+	+-	+ -	+
	Nshimyumukiza et al., 2018	+	+	-	+	-		+-	++		+	+	+	+	+	+	+-	++	-+
	Xie et al., 2020	+	-	+	+	-		+-	++	-+	+	+	+	+	+	+	+-	++	-+

Supplemental Table 25. Exclusion rationale for studies excluded after full-text review.

	Published		
Study	Year	Covidence #	Exclusion reason
Haidar 2018	2018	#131	Exclusion reason: abstract only
Ju 2021	2021	#508	Exclusion reason: case report
García-Pérez 2018	2018	#612	Exclusion reason: systematic evidence review/meta-analysis
Palomaki 2018	2018	#669	Exclusion reason: systematic evidence review/meta-analysis
Huijsdens-vanAmsterdam 2018	2018	#641	Exclusion reason: systematic evidence review/meta-analysis
Gil 2017	2017	#565	Exclusion reason: systematic evidence review/meta-analysis
Badeau 2017	2017	#598	Exclusion reason: systematic evidence review/meta-analysis
Cernat 2019	2019	#677	Exclusion reason: systematic evidence review/meta-analysis
Benn 2019	2019	#703	Exclusion reason: systematic evidence review/meta-analysis
Zaami 2021	2021	#545	Exclusion reason: systematic evidence review/meta-analysis
Bianchi 2014	2014	#59	Exclusion reason: systematic evidence review/meta-analysis
Liang 2020	2020	#729	Exclusion reason: Unable to obtain full text
Saes 2019	2019	#682	Exclusion reason: Unable to obtain full text
Cai 2017	2017	#606	Exclusion reason: Unable to obtain full text
Bevilacqua 2019	2019	#640	Exclusion reason: Unable to obtain full text
Kane 2021	2021	#528	Exclusion reason: wrong intervention
Wang 2014	2014	#399	Exclusion reason: wrong intervention
Sullivan 2019	2019	#348	Exclusion reason: wrong intervention
Vinante 2018	2018	#609	Exclusion reason: wrong outcomes
Scott 2018	2018	#568	Exclusion reason: wrong outcomes
Fujimoto 2020		#746	Exclusion reason: wrong outcomes
Miltoft 2018	2018	#616	Exclusion reason: wrong outcomes

	Published		
Study	Year	Covidence #	Exclusion reason
Birko 2019	2019	#675	Exclusion reason: wrong outcomes
Balaguer 2020	2020	#748	Exclusion reason: wrong outcomes
Morano 2018	2018	#653	Exclusion reason: wrong outcomes
Gammon 2018	2018	#611	Exclusion reason: wrong outcomes
Agatisa 2018	2018	#645	Exclusion reason: wrong outcomes
Lund 2018	2018	#635	Exclusion reason: wrong outcomes
Yang 2021	2021	#525	Exclusion reason: wrong outcomes
Akiel 2020	2020	#494	Exclusion reason: wrong outcomes
Kater-Kuipers 2021	2021	#538	Exclusion reason: wrong outcomes
Melcer 2021	2021	#543	Exclusion reason: wrong outcomes
Ravitsky 2021	2021	#502	Exclusion reason: wrong outcomes
Chen 2019	2019	#81	Exclusion reason: wrong outcomes
Dhamankar 2020	2020	#113	Exclusion reason: wrong outcomes
Crabbe 2019	2019	#97	Exclusion reason: wrong outcomes
Cheng 2019	2019	#85	Exclusion reason: wrong outcomes
Tiller 2015	2015	#371	Exclusion reason: wrong outcomes
Tan 2016	2016	#363	Exclusion reason: wrong outcomes
Bayindir 2015	2015	#44	Exclusion reason: wrong outcomes
Agatisa 2015	2015	#31	Exclusion reason: wrong outcomes
Barrett 2017	2017	#43	Exclusion reason: wrong outcomes
Pariente 2016	2016	#283	Exclusion reason: wrong outcomes
Farrell 2015	2015	#417	Exclusion reason: wrong outcomes
vanSchendel 2015	2015	#384	Exclusion reason: wrong outcomes
D'Aversa 2018	2018	#102	Exclusion reason: wrong outcomes
Okmen 2020	2020	#734	Exclusion reason: wrong patient population
Ehrich 2017	2017	#559	Exclusion reason: wrong patient population

	Published		
Study	Year	Covidence #	Exclusion reason
Qian 2019	2019	#643	Exclusion reason: wrong patient population
Grati 2017	2017	#581	Exclusion reason: wrong patient population
Galeva 2019	2019	#690	Exclusion reason: wrong patient population
Galeva 2019	2019	#666	Exclusion reason: wrong patient population
Richardson 2017	2017	#602	Exclusion reason: wrong patient population
Chan 2018	2018	#595	Exclusion reason: wrong patient population
Chan 2018	2018	#617	Exclusion reason: wrong patient population
Ravi 2018	2018	#629	Exclusion reason: wrong patient population
Zheng 2019	2019	#697	Exclusion reason: wrong patient population
Yaron 2020	2020	#733	Exclusion reason: wrong patient population
Lee 2018	2018	#627	Exclusion reason: wrong patient population
Pasquini 2019	2019	#668	Exclusion reason: wrong patient population
Suzumori 2021	2021	#755	Exclusion reason: wrong patient population
Gil 2017	2017	#562	Exclusion reason: wrong patient population
Flöck 2017	2017	#586	Exclusion reason: wrong patient population
Al-Ibraheemi 2017	2017	#577	Exclusion reason: wrong patient population
Martínez-Payo 2018	2018	#636	Exclusion reason: wrong patient population
Guy 2019	2019	#683	Exclusion reason: wrong patient population
Huang 2018	2018	#622	Exclusion reason: wrong patient population
Lu 2018	2018	#619	Exclusion reason: wrong patient population
Cheng 2018	2018	#599	Exclusion reason: wrong patient population
ElKhattabi 2019	2019	#659	Exclusion reason: wrong patient population
Chibuk 2020	2020	#743	Exclusion reason: wrong patient population
Vifçifá 2017	2017	#610	Exclusion reason: wrong patient population
VanOpstal 2018	2018	#558	Exclusion reason: wrong patient population
Lund 2021	2021	#540	Exclusion reason: wrong patient population

	Published		
Study	Year	Covidence #	Exclusion reason
Togneri 2020	2020	#491	Exclusion reason: wrong patient population
Junhui 2021	2021	#515	Exclusion reason: wrong patient population
Wu 2020	2020	#498	Exclusion reason: wrong patient population
Zou 2021	2021	#497	Exclusion reason: wrong patient population
Wan 2020	2020	#394	Exclusion reason: wrong patient population
Zheng 2020	2020	#465	Exclusion reason: wrong patient population
Mesoraca 2020	2020	#245	Exclusion reason: wrong patient population
Iwarsson 2020	2020	#163	Exclusion reason: wrong patient population
Cai 2018	2018	#71	Exclusion reason: wrong patient population
Togneri 2019	2019	#372	Exclusion reason: wrong patient population
Verma 2018	2018	#386	Exclusion reason: wrong patient population
Shiv 2017	2017	#328	Exclusion reason: wrong patient population
Ericsson 2019	2019	#122	Exclusion reason: wrong patient population
Holzer 2019	2019	#148	Exclusion reason: wrong patient population
Kellogg 2014	2014	#177	Exclusion reason: wrong patient population
How 2019	2019	#150	Exclusion reason: wrong patient population
Wang 2015	2015	#396	Exclusion reason: wrong patient population
Lefkowitz 2016	2016	#201	Exclusion reason: wrong patient population
Takeda 2018	2018	#359	Exclusion reason: wrong patient population
Chetty 2013	2013	#87	Exclusion reason: wrong patient population
Ramdaney 2018	2018	#296	Exclusion reason: wrong patient population
Lee 2019	2019	#701	Exclusion reason: wrong patient population
Scibetta 2017	2017	#583	Exclusion reason: wrong patient population
He 2018	2018	#649	Exclusion reason: wrong study design
Liang 2018	2018	#670	Exclusion reason: wrong study design
McKanna 2019	2019	#652	Exclusion reason: wrong study design

	Published		
Study	Year	Covidence #	Exclusion reason
Kaseniit 2018	2018	#665	Exclusion reason: wrong study design
Bevilacqua 2018	2018	#642	Exclusion reason: wrong study design
Dahl 2018	2018	#632	Exclusion reason: wrong study design
Zhang 2019	2019	#681	Exclusion reason: wrong study design
Lee 2018	2018	#605	Exclusion reason: wrong study design
Lin 2020	2020	#753	Exclusion reason: wrong study design
Schmid 2018	2018	#601	Exclusion reason: wrong study design
Abousleiman 2019	2019	#688	Exclusion reason: wrong study design
Kagan 2017	2017	#576	Exclusion reason: wrong study design
Jones 2018	2018	#604	Exclusion reason: wrong study design
Post 2017	2017	#593	Exclusion reason: wrong study design
Suzumori 2014	2014	#353	Exclusion reason: wrong study design
Aziz 2020	2020	#489	Exclusion reason: wrong study design
Kim 2018	2018	#183	Exclusion reason: wrong study design
Gadsbøll 2020	2020	#422	Exclusion reason: wrong study design
Yin 2015	2015	#443	Exclusion reason: wrong study design
McNamara 2015	2015	#239	Exclusion reason: wrong study design
Li 2015	2015	#206	Exclusion reason: wrong study design
Wang 2015	2015	#398	Exclusion reason: wrong study design
Ji 2018	2018	#167	Exclusion reason: wrong study design
Yin 2019	2019	#445	Exclusion reason: wrong study design
Eswarachari 2019	2019	#124	Exclusion reason: wrong study design
Farrell 2014	2014	#418	Exclusion reason: wrong study design
Xing 2018	2018	#414	Exclusion reason: wrong study design
Futch 2013	2013	#421	Exclusion reason: wrong study design
Friel 2014	2014	#420	Exclusion reason: wrong study design

	Published		
Study	Year	Covidence #	Exclusion reason
Bettencourt 2014	2014	#9	Exclusion reason: wrong study design
Anazi 2017	2017	#17	Exclusion reason: wrong study design/article type

References

- 1. Alyafee Y, Al Tuwaijri A, Alam Q, et al. Next Generation Sequencing Based Non-invasive Prenatal Testing (NIPT): First Report From Saudi Arabia. Frontiers in Genetics. 2021;12.
- 2. Amant F, Verheecke M, Wlodarska I, et al. Presymptomatic Identification of Cancers in Pregnant Women During Noninvasive Prenatal Testing. JAMA Oncol. 2015;1(6):814-819.
- 3. Avram CM, Shaffer BL, Sparks TN, Allen AJ, Caughey AB. Cell-free fetal DNA screening for detection of microdeletion syndromes: a cost-effectiveness analysis. J Matern Fetal Neonatal Med. 2021;34(11):1732-1740.
- 4. Basaran S, Has R, Kalelioglu IH, et al. Follow-Up Studies of cf-DNA Testing from 101 Consecutive Fetuses and Related Ultrasound Findings. Ultraschall Med. 2020;41(2):175-185.
- 5. Bevilacqua E, Ordóñez E, Hurtado I, et al. Screening for Sex Chromosome Aneuploidy by Cell-Free DNA Testing: Patient Choice and Performance. Fetal Diagn Ther. 2018;44(2):98-104.
- 6. Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. Jama. 2015;314(2):162-169.
- 7. Bianchi DW, Parsa S, Bhatt S, et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol. 2015;125(2):375-382.
- 8. Borth H, Teubert A, Glaubitz R, et al. Analysis of cell-free DNA in a consecutive series of 13,607 routine cases for the detection of fetal chromosomal aneuploidies in a single center in Germany. Arch Gynecol Obstet. 2020.
- 9. Brison N, Storms J, Villela D, et al. Maternal copy-number variations in the DMD gene as secondary findings in noninvasive prenatal screening. Genet Med. 2019;21(12):2774-2780.
- Brison N, Van Den Bogaert K, Dehaspe L, et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Genet Med. 2017;19(3):306-313.
- Burrus AD, Shaw-Williams MM, Thagard AS. Optimizing Fetal Aneuploidy Screening in an Austere Military Clinical Environment: A Prenatal Cost Comparison. Mil Med. 2021;186(3-4):e410-e414.
- 12. Chau MHK, Lam DYM, Zhu X, et al. The utility of genome-wide cell-free DNA screening in the prenatal diagnosis of Pallister-Killian syndrome. Prenat Diagn. 2020;40(8):1005-1012.
- Chen M, Jiang F, Guo Y, et al. Validation of fetal DNA fraction estimation and its application in noninvasive prenatal testing for aneuploidy detection in multiple pregnancies. Prenat Diagn. 2019;39(13):1273-1282.
- 14. Chen Y, Lai Y, Xu F, et al. The application of expanded noninvasive prenatal screening for genome-wide chromosomal abnormalities and genetic counseling. J Matern Fetal Neonatal Med. 2021:1-7.
- 15. Chen Y, Yu Q, Mao X, Lei W, He M, Lu W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum Genomics. 2019;13(1):60.
- Colosi E, D'Ambrosio V, Periti E. First trimester contingent screening for trisomies 21,18,13: is this model cost efficient and feasible in public health system? J Matern Fetal Neonatal Med. 2017;30(24):2905-2910.
- Costa JM, Letourneau A, Favre R, et al. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study. Genet Med. 2018;20(11):1346-1353. http://doi.org/10.1038/gim.2018.4

- 18. Crimmins S, Doyle L, Slejko J, Kopelman JN, Turan O. QUAD versus cfDNA in an urban population in the second trimester for detection of trisomy 21: a cost sensitivity analysis. J Matern Fetal Neonatal Med. 2017;30(19):2334-2339.
- 19. Dai R, Yu Y, Zhang H, et al. Analysis of 17,428 pregnant women undergoing non-invasive prenatal testing for fetal chromosome in Northeast China. Medicine (Baltimore). 2021;100(6):e24740.
- 20. Dharajiya NG, Grosu DS, Farkas DH, et al. Incidental Detection of Maternal Neoplasia in Noninvasive Prenatal Testing. Clin Chem. 2018;64(2):329-335.
- DiNonno W, Demko Z, Martin K, et al. Quality Assurance of Non-Invasive Prenatal Screening (NIPS) for Fetal Aneuploidy Using Positive Predictive Values as Outcome Measures. J Clin Med. 2019;8(9).
- 22. Dyr B, Boomer T, Almasri EA, et al. A new era in aneuploidy screening: cfDNA testing in >30,000 multifetal gestations: Experience at one clinical laboratory. PLoS One. 2019;14(8):e0220979.
- 23. Gammon BL, Jaramillo C, Riggan KA, Allyse M. Decisional regret in women receiving high risk or inconclusive prenatal cell-free DNA screening results. J Matern Fetal Neonatal Med. 2020;33(8):1412-1418.
- 24. Garite TJ, Combs CA, Maurel K, Abril D, Das A. The Impact of cfDNA Screening on the Frequency of Invasive Procedures in a Geographically Diverse Private Network. Am J Perinatol. 2017;34(14):1430-1435.
- Garshasbi M, Wang Y, Hantoosh Zadeh S, Giti S, Piri S, Reza Hekmat M. Clinical Application of Cell-Free DNA Sequencing-Based Noninvasive Prenatal Testing for Trisomies 21, 18, 13 and Sex Chromosome Aneuploidy in a Mixed-Risk Population in Iran. Fetal Diagn Ther. 2020;47(3):220-227.
- 26. Gil MM, Galeva S, Jani J, et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(6):734-742.
- 27. Gomes HH, Lourenço I, Ribeiro J, Martins D, Ribeiro R, Francisco C. Cell-free DNA and contingent screening: Our first year. J Gynecol Obstet Hum Reprod. 2019;48(7):509-514.
- Gou L, Fang Y, Wang N, et al. Clinical management of pregnancies with positive screening results for rare autosomal aneuploidies at a single center. J Int Med Res. 2020;48(11):300060520966877.
- 29. Guy GP, Hargrave J, Dunn R, Price K, Short J, Thilaganathan B. Secondary non-invasive prenatal screening for fetal trisomy: an effectiveness study in a public health setting. Bjog. 2021;128(2):440-446. http://doi.org/10.1111/1471-0528.16464
- He Y, Wang Y, Li Z, et al. Clinical performance of non-invasive prenatal testing for trisomies 21, 18 and 13 in twin pregnancies: A cohort study and a systematic meta-analysis. Acta Obstet Gynecol Scand. 2020;99(6):731-743.
- 31. Hu H, Wang L, Wu J, et al. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies. Hum Genomics. 2019;13(1):14.
- Huang T, Meschino WS, Teitelbaum M, Dougan S, Okun N. Enhanced First Trimester Screening for Trisomy 21 with Contingent Cell-Free Fetal DNA: A Comparative Performance and Cost Analysis. J Obstet Gynaecol Can. 2017;39(9):742-749.
- 33. Ji X, Li J, Huang Y, et al. Identifying occult maternal malignancies from 1.93 million pregnant women undergoing noninvasive prenatal screening tests. Genet Med. 2019;21(10):2293-2302.
- Kagan KO, Hoopmann M, Pfaff T, et al. First Trimester Screening for Common Trisomies and Microdeletion 22q11.2 Syndrome Using Cell-Free DNA: A Prospective Clinical Study. Fetal Diagn Ther. 2020;47(11):841-852.

- 35. Kagan KO, Maier V, Sonek J, et al. False-Positive Rate in First-Trimester Screening Based on Ultrasound and Cell-Free DNA versus First-Trimester Combined Screening with Additional Ultrasound Markers. Fetal Diagn Ther. 2019;45(5):317-324.
- Kagan KO, Sroka F, Sonek J, et al. First-trimester risk assessment based on ultrasound and cellfree DNA vs combined screening: a randomized controlled trial. Ultrasound Obstet Gynecol. 2018;51(4):437-444.
- 37. Khalil A, Archer R, Hutchinson V, et al. Noninvasive prenatal screening in twin pregnancies with cell-free DNA using the IONA test: a prospective multicenter study. Am J Obstet Gynecol. 2021.
- 38. Kostenko E, Chantraine F, Vandeweyer K, et al. Clinical and Economic Impact of Adopting Noninvasive Prenatal Testing as a Primary Screening Method for Fetal Aneuploidies in the General Pregnancy Population. Fetal Diagn Ther. 2019;45(6):413-423.
- Kypri E, Ioannides M, Touvana E, et al. Non-invasive prenatal testing of fetal chromosomal aneuploidies: validation and clinical performance of the veracity test. Mol Cytogenet. 2019;12:34. http://doi.org/10.1186/s13039-019-0446-0
- 40. Lai Y, Zhu X, He S, et al. Performance of Cell-Free DNA Screening for Fetal Common Aneuploidies and Sex Chromosomal Abnormalities: A Prospective Study from a Less Developed Autonomous Region in Mainland China. Genes (Basel). 2021;12(4). http://doi.org/10.3390/genes12040478
- Langlois S, Johnson J, Audibert F, et al. Comparison of first-tier cell-free DNA screening for common aneuploidies with conventional publically funded screening. Prenat Diagn. 2017;37(12):1238-1244.
- 42. Le Bras A, Salomon LJ, Bussières L, et al. Cost-effectiveness of five prenatal screening strategies for trisomies and other unbalanced chromosomal abnormalities: model-based analysis. Ultrasound Obstet Gynecol. 2019;54(5):596-603.
- Le Conte G, Letourneau A, Jani J, et al. Cell-free fetal DNA analysis in maternal plasma as screening test for trisomies 21, 18 and 13 in twin pregnancy. Ultrasound Obstet Gynecol. 2018;52(3):318-324.
- 44. Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet Med. 2019;21(9):1998-2006.
- 45. Liang D, Lin Y, Qiao F, et al. Perinatal outcomes following cell-free DNA screening in >32 000 women: Clinical follow-up data from a single tertiary center. Prenat Diagn. 2018;38(10):755-764.
- 46. Lin Y, Liang D, Wang Y, et al. Analyzing false-negative results detected in low-risk non-invasive prenatal screening cases. Mol Genet Genomic Med. 2020;8(4):e1185.
- Lu W, Huang T, Wang XR, et al. Next-generation sequencing: a follow-up of 36,913 singleton pregnancies with noninvasive prenatal testing in central China. J Assist Reprod Genet. 2020;37(12):3143-3150.
- 48. Lu X, Wang C, Sun Y, Tang J, Tong K, Zhu J. Noninvasive prenatal testing for assessing foetal sex chromosome aneuploidy: a retrospective study of 45,773 cases. Mol Cytogenet. 2021;14(1):1.
- 49. Luo Y, Hu H, Jiang L, et al. A retrospective analysis the clinic data and follow-up of non-invasive prenatal test in detection of fetal chromosomal aneuploidy in more than 40,000 cases in a single prenatal diagnosis center. Eur J Med Genet. 2020;63(9):104001.
- 50. Margiotti K, Cesta A, Dello Russo C, et al. Cell-free DNA screening for sex chromosomal aneuploidies in 9985 pregnancies: Italian single experience. BMC Res Notes. 2020;13(1):167.
- Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a single-nucleotide polymorphismbased non-invasive prenatal test for five clinically significant microdeletions. Clin Genet. 2018;93(2):293-300.
- 52. Martin KA, Samango-Sprouse CA, Kantor V, et al. Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing. Am J Obstet Gynecol MFM. 2020;2(3):100152.

- 53. Motevasselian M, Saleh Gargari S, Younesi S, et al. Non-invasive prenatal test to screen common trisomies in twin pregnancies. Mol Cytogenet. 2020;13:5.
- Noh JJ, Ryu HM, Oh SY, Choi SJ, Roh CR, Kim JH. A two-year experience of non-invasive prenatal testing (NIPT) at an urban tertiary medical center in South Korea. Taiwan J Obstet Gynecol. 2019;58(4):545-551.
- 55. Norwitz ER, McNeill G, Kalyan A, et al. Validation of a Single-Nucleotide Polymorphism-Based Non-Invasive Prenatal Test in Twin Gestations: Determination of Zygosity, Individual Fetal Sex, and Fetal Aneuploidy. J Clin Med. 2019;8(7).
- 56. Nshimyumukiza L, Menon S, Hina H, Rousseau F, Reinharz D. Cell-free DNA noninvasive prenatal screening for aneuploidy versus conventional screening: A systematic review of economic evaluations. Clin Genet. 2018;94(1):3-21.
- 57. Oneda B, Sirleto P, Baldinger R, et al. Genome-wide non-invasive prenatal testing in single- and multiple-pregnancies at any risk: Identification of maternal polymorphisms to reduce the number of unnecessary invasive confirmation testing. Eur J Obstet Gynecol Reprod Biol. 2020;252:19-29.
- 58. Panchalee T, Poungvarin N, Amornrit W, Pooliam J, Taluengjit P, Wataganara T. Clinical performance of DNA-based prenatal screening using single-nucleotide polymorphisms approach in Thai women with singleton pregnancy. Mol Genet Genomic Med. 2020;8(7):e1256.
- 59. Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9(405).
- 60. Pescia G, Guex N, Iseli C, et al. Cell-free DNA testing of an extended range of chromosomal anomalies: clinical experience with 6,388 consecutive cases. Genet Med. 2017;19(2):169-175.
- Petersen AK, Cheung SW, Smith JL, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am J Obstet Gynecol. 2017;217(6):691.e691-691.e696.
- 62. Qi Y, Yang J, Hou Y, et al. The significance of trisomy 7 mosaicism in noninvasive prenatal screening. Hum Genomics. 2019;13(1):18.
- 63. Rousseau F, Langlois S, Johnson JA, et al. Prospective head-to-head comparison of accuracy of two sequencing platforms for screening for fetal aneuploidy by cell-free DNA: the PEGASUS study. Eur J Hum Genet. 2019;27(11):1701-1715.
- Sánchez-Durán M, Bernabeu García A, Calero I, et al. Clinical application of a contingent screening strategy for trisomies with cell-free DNA: a pilot study. BMC Pregnancy Childbirth. 2019;19(1):274.
- 65. Sandow R, Scott FP, Schluter PJ, et al. Increasing maternal age is not a significant cause of falsepositive results for monosomy X in non-invasive prenatal testing. Prenat Diagn. 2020;40(11):1466-1473.
- 66. Schwartz S, Kohan M, Pasion R, Papenhausen PR, Platt LD. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases. Prenat Diagn. 2018;38(3):210-218.
- 67. Scott F, Bonifacio M, Sandow R, Ellis K, Smet ME, McLennan A. Rare autosomal trisomies: Important and not so rare. Prenat Diagn. 2018;38(10):765-771.
- 68. Serapinas D, Boreikaitė E, Bartkevičiūtė A, Norvilaitė K, Narbekovas A, Bartkevičienė D. The Level of Free Fetal DNA as Precise Noninvasive Marker for Chromosomal Aneuploidies: First Results from BALTIC Region. Medicina (Kaunas). 2020;56(11).
- 69. Snyder HL, Curnow KJ, Bhatt S, Bianchi DW. Follow-up of multiple aneuploidies and single monosomies detected by noninvasive prenatal testing: implications for management and counseling. Prenat Diagn. 2016;36(3):203-209.

- 70. Srebniak MI, Knapen M, Govaerts LCP, et al. Social and medical need for whole genome high resolution NIPT. Mol Genet Genomic Med. 2020;8(1):e1062.
- 71. Tekesin I. Cell-free DNA Testing in Routine Practice: Characterisation of a Cohort with Positive Results for Trisomies, Sex Chromosome Anomalies and Microdeletions. Geburtshilfe und Frauenheilkunde. 2021;81(1):81-89 (Article).
- 72. Van Den Bogaert K, Lannoo L, Brison N, et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. Genet Med. 2021;23(6):1137-1142. http://doi.org/10.1038/s41436-021-01101-4
- 73. van der Meij KRM, Sistermans EA, Macville MVE, et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am J Hum Genet. 2019;105(6):1091-1101.
- 74. Wan J, Li R, Zhang Y, et al. Pregnancy outcome of autosomal aneuploidies other than common trisomies detected by noninvasive prenatal testing in routine clinical practice. Prenat Diagn. 2018;38(11):849-857.
- 75. Wu X, Li Y, Xie X, et al. Clinical Review of Noninvasive Prenatal Testing: Experience from 551 Pregnancies with Noninvasive Prenatal Testing-Positive Results in a Tertiary Referral Center. J Mol Diagn. 2020;22(12):1469-1475.
- 76. Xie X, Wang M, Goh ES, et al. Noninvasive Prenatal Testing for Trisomies 21, 18, and 13, Sex Chromosome Aneuploidies, and Microdeletions in Average-Risk Pregnancies: A Cost-Effectiveness Analysis. J Obstet Gynaecol Can. 2020;42(6):740-749.e712.
- 77. Xu L, Huang H, Lin N, et al. Non-invasive cell-free fetal DNA testing for aneuploidy: multicenter study of 31 515 singleton pregnancies in southeastern China. Ultrasound Obstet Gynecol. 2020;55(2):242-247.
- 78. Yang J, Hou Y, Guo F, et al. Noninvasive prenatal detection of fetal sex chromosome abnormalities using the semiconductor sequencing platform (SSP) in Southern China. J Assist Reprod Genet. 2021;38(3):727-734.
- Yao H, Gao Y, Zhao J, et al. Genome-wide detection of additional fetal chromosomal abnormalities by cell-free DNA testing of 15,626 consecutive pregnant women. Sci China Life Sci. 2019;62(2):215-224.
- 80. Ye X, Lin S, Song X, et al. Identification of copy number variants by NGS-based NIPT at low sequencing depth. Eur J Obstet Gynecol Reprod Biol. 2021;256:297-301.
- 81. Yin L, Tang Y, Lu Q, Pan A, Shi M. Application value of NIPT for uncommon fetal chromosomal abnormalities. Mol Cytogenet. 2020;13:39.
- 82. Yu D, Zhang K, Han M, et al. Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low-pass whole-genome sequencing. Mol Genet Genomic Med. 2019;7(6):e674.
- 83. Yu W, Lv Y, Yin S, et al. Screening of fetal chromosomal aneuploidy diseases using noninvasive prenatal testing in twin pregnancies. Expert Rev Mol Diagn. 2019;19(2):189-196.
- 84. Zheng J, Lu H, Li M, et al. The Clinical Utility of Non-invasive Prenatal Testing for Pregnant Women With Different Diagnostic Indications. Front Genet. 2020;11:624.
- 85. Zhou Q, Zhu ZP, Zhang B, Yu B, Cai ZM, Yuan P. Clinical features and pregnancy outcomes of women with abnormal cell-free fetal DNA test results. Ann Transl Med. 2019;7(14):317.
- 86. Zhou X, Sui L, Xu Y, et al. Contribution of maternal copy number variations to false-positive fetal trisomies detected by noninvasive prenatal testing. Prenat Diagn. 2017;37(4):318-322.
- 87. Zhu X, Chen M, Wang H, et al. Clinical utility of expanded non-invasive prenatal screening and chromosomal microarray analysis in high-risk pregnancy. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2021;57(3):459-465.